ترغب بنشر مسار تعليمي؟ اضغط هنا

A crucial subroutine for various quantum computing and communication algorithms is to efficiently extract different classical properties of quantum states. In a notable recent theoretical work by Huang, Kueng, and Preskill~cite{huang2020predicting}, a thrifty scheme showed how to project the quantum state into classical shadows and simultaneously predict $M$ different functions of a state with only $mathcal{O}(log_2 M)$ measurements, independent of the system size and saturating the information-theoretical limit. Here, we experimentally explore the feasibility of the scheme in the realistic scenario with a finite number of measurements and noisy operations. We prepare a four-qubit GHZ state and show how to estimate expectation values of multiple observables and Hamiltonian. We compare the strategies with uniform, biased, and derandomized classical shadows to conventional ones that sequentially measures each state function exploiting either importance sampling or observable grouping. We next demonstrate the estimation of nonlinear functions using classical shadows and analyze the entanglement of the prepared quantum state. Our experiment verifies the efficacy of exploiting (derandomized) classical shadows and sheds light on efficient quantum computing with noisy intermediate-scale quantum hardware.
Detecting multipartite quantum coherence usually requires quantum state reconstruction, which is quite inefficient for large-scale quantum systems. Along this line of research, several efficient procedures have been proposed to detect multipartite qu antum coherence without quantum state reconstruction, among which the spectrum-estimation-based method is suitable for various coherence measures. Here, we first generalize the spectrum-estimation-based method for the geometric measure of coherence. Then, we investigate the tightness of the estimated lower bound of various coherence measures, including the geometric measure of coherence, $l_1$-norm of coherence, the robustness of coherence, and some convex roof quantifiers of coherence multiqubit GHZ states and linear cluster states. Finally, we demonstrate the spectrum-estimation-based method as well as the other two efficient methods by using the same experimental data [Ding et al. Phys. Rev. Research 3, 023228 (2021)]. We observe that the spectrum-estimation-based method outperforms other methods in various coherence measures, which significantly enhances the accuracy of estimation.
Quantification of coherence lies at the heart of quantum information processing and fundamental physics. Exact evaluation of coherence measures generally needs a full reconstruction of the density matrix, which becomes intractable for large-scale mul tipartite systems. Here, we propose a systematic theoretical approach to efficiently estimating lower and upper bounds of coherence in multipartite states. Under the stabilizer formalism, the lower bound is determined by the spectrum estimation method with a small number of measurements and the upper bound is determined by a single measurement. We verify our theory with a four-qubit optical quantum system.We experimentally implement various multi-qubit entangled states, including the Greenberger-Horne-Zeilinger state, the cluster state, and the W state, and show how their coherence are efficiently inferred from measuring few observables.
Ideal quantum teleportation transfers an unknown quantum state intact from one party Alice to the other Bob via the use of a maximally entangled state and the communication of classical information. If Alice and Bob do not share entanglement, the max imal average fidelity between the state to be teleported and the state received, according to a classical measure-and-prepare scheme, is upper bounded by a function $f_{mathrm{c}}$ that is inversely proportional to the Hilbert space dimension. In fact, even if they share entanglement, the so-called teleportation fidelity may still be less than the classical threshold $f_{mathrm{c}}$. For two-qubit entangled states, conditioned on a successful local filtering, the teleportation fidelity can always be activated, i.e., boosted beyond $f_{mathrm{c}}$. Here, for all dimensions larger than two, we show that the teleportation power hidden in a subset of entangled two-qudit Werner states can also be activated. In addition, we show that an entire family of two-qudit rank-deficient states violates the reduction criterion of separability, and thus their teleportation power is either above the classical threshold or can be activated. Using hybrid entanglement prepared in photon pairs, we also provide the first proof-of-principle experimental demonstration of the activation of teleportation power hidden in this latter family of qubit states. The connection between the possibility of activating hidden teleportation power with the closely-related problem of entanglement distillation is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا