ترغب بنشر مسار تعليمي؟ اضغط هنا

179 - Xiaolun Jia , Xiangyun Zhou 2021
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions are currently available. We utilize a deep reinforcement learning-based framework to jointly optimize the IRS and reader beamforming, with no knowledge of the channels or ambient signal. We show that the proposed framework can facilitate effective AmBC communication with a detection performance comparable to several benchmarks under full channel knowledge.
121 - Xiaolun Jia , Xiangyun Zhou 2021
The bistatic backscatter architecture, with its extended range, enables flexible deployment opportunities for backscatter devices. In this paper, we study the placement of power beacons (PBs) in bistatic backscatter networks to maximize the guarantee d coverage distance (GCD), defined as the distance from the reader within which backscatter devices are able to satisfy a given quality-of-service constraint. This work departs from conventional energy source placement problems by considering the performance of the additional backscatter link on top of the energy transfer link. We adopt and optimize a symmetric PB placement scheme to maximize the GCD. The optimal PB placement under this scheme is obtained using either analytically tractable expressions or an efficient algorithm. Numerical results provide useful insights into the impacts of various system parameters on the PB placement and the resulting GCD, plus the advantages of the adopted symmetric placement scheme over other benchmark schemes.
Bistatic backscatter communication (BackCom) allows passive tags to transmit over extended ranges, but at the cost of having carrier emitters either transmitting at high powers or being deployed very close to tags. In this paper, we examine how the p resence of an intelligent reflecting surface (IRS) could benefit the bistatic BackCom system. We study the transmit power minimization problem at the carrier emitter, where its transmit beamforming vector is jointly optimized with the IRS phase shifts, whilst guaranteeing a required BackCom performance. A unique feature in this system setup is the multiple IRS reflections experienced by signals traveling from the carrier emitter to the reader, which renders the optimization problem highly nonconvex. Therefore, we propose algorithms based on the minorization-maximization and alternating optimization techniques to obtain approximate solutions for the joint design. We also propose low-complexity algorithms based on successive optimization of individual phase shifts. Our results reveal considerable transmit power savings in both single-tag and multi-tag systems, even with moderate IRS sizes, which may be translated to significant range improvements using the original transmit power or reduce the reliance of tags on carrier emitters located at close range.
Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willies optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willies detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
Set-Membership Filter (SMF) has been extensively studied for state estimation in the presence of bounded noises with unknown statistics. Since it was first introduced in the 1960s, the studies on SMF have used the set-based description as its mathema tical framework. One important issue that has been overlooked is the optimality of SMF. In this work, we put forward a new mathematical framework for SMF using concepts of uncertain variables. We first establish two basic properties of uncertain variables, namely, the law of total range (a non-stochastic version of the law of total probability) and the equivalent Bayes rule. This enables us to put forward a general SMFing framework with established optimality. Furthermore, we obtain the optimal SMF under a non-stochastic Markov condition, which is shown to be fundamentally equivalent to the Bayes filter. Note that the classical SMF in the literature is only equivalent to the optimal SMF we obtained under the non-stochastic Markov condition. When this condition is violated, we show that the classical SMF is not optimal and it only gives an outer bound on the optimal estimation.
One of the key challenges of the Internet of Things (IoT) is to sustainably power the large number of IoT devices in real-time. In this paper, we consider a wireless power transfer (WPT) scenario between an energy transmitter (ET) capable of retrodir ective WPT and an energy receiver (ER) capable of ambient backscatter in the presence of an ambient source (AS). The ER requests WPT by backscattering signals from an AS towards the ET, which then retrodirectively beamforms an energy signal towards the ER. To remove the inherent direct-link ambient interference, we propose a scheme of ambient backscatter training. Specifically, the ER varies the reflection coefficient multiple times while backscattering each ambient symbol according to a certain pattern called the training sequence, whose design criterion we also present. To evaluate the system performance, we derive an analytical expression for the average harvested power at the ER. Our numerical results show that with the proposed scheme, the ER harvests tens of $mu$W of power, without any CSI estimation or active transmission from the ER, which is a significant improvement for low-power and low-cost ambient backscatter devices.
In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) in a point-to-point system, adopting practical $M$-ary modulation. We take into account the fact that the receivers radio-frequency (RF) ene rgy harvesting circuit can only harvest energy when the received signal power is greater than a certain sensitivity level. For both power-splitting (PS) and time-switching (TS) schemes, we derive the energy harvesting performance as well as the information decoding performance for the Nakagami-$m$ fading channel. We also analyze the performance tradeoff between energy harvesting and information decoding by studying an optimization problem, which maximizes the information decoding performance and satisfies a constraint on the minimum harvested energy. Our analysis shows that (i) for the PS scheme, modulations with high peak-to-average power ratio achieve better energy harvesting performance, (ii) for the TS scheme, it is desirable to concentrate the power for wireless power transfer in order to minimize the non-harvested energy caused by the RF energy harvesting sensitivity level, and (iii) channel fading is beneficial for energy harvesting in both PS and TS schemes.
In this paper, we revisit a recently proposed receiver design, named the splitting receiver, which jointly uses coherent and non-coherent processing for signal detection. By considering an improved signal model for the splitting receiver as compared to the original study in the literature, we conduct a performance analysis on the achievable data rate under Gaussian signaling and obtain a fundamentally different result on the performance gain of the splitting receiver over traditional receiver designs that use either coherent or non-coherent processing alone. Specifically, the original study ignored the antenna noise and concluded on a 50% gain in achievable data rate in the high signal-to-noise ratio (SNR) regime. In contrast, we include the antenna noise in the signal model and show that the splitting receiver improves the achievable data rate by a constant gap in the high SNR regime. This represents an important correction of the theoretical understanding on the performance of the splitting receiver. In addition, we examine the maximum-likelihood detection and derive a low-complexity detection rule for the splitting receiver for practical modulation schemes. Our numerical results give further insights into the conditions under which the splitting receiver achieves significant gains in terms of either achievable data rate or detection error probability.
Prior studies on covert communication with noise uncertainty adopted a worst-case approach from the wardens perspective. That is, the worst-case detection performance of the warden is used to assess covertness, which is overly optimistic. Instead of simply considering the worst limit, in this work, we take the distribution of noise uncertainty into account to evaluate the overall covertness in a statistical sense. Specifically, we define new metrics for measuring the covertness, which are then adopted to analyze the maximum achievable rate for a given covertness requirement under both bounded and unbounded noise uncertainty models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا