ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - Xiangyan Li , Wei Liu , Yichun Xu 2015
Nano-crystallize materials have been known for decades to potentially owe the novel self-healing ability for radiation damage, which has been demonstrated to be especially linked to preferential occupation of interstitials at grain boundary (GB) and promoted vacancy-interstitial annihilation. A major obstacle to better understanding the healing property is the lack of an atomistic picture of the interstitial states near GBs, due to severely separation of the timescale of interstitial segregation from other events and abundance of interstitials at the GB. Here, we report a generic self-blocking effect of the interstitial cluster (SIAn) near the metallic GB in W, Mo and Fe. Upon creating a SIAn near the GB, it is immediately trapped by the GB during the GB structural relaxation and blocks there, impeding GBs further spontaneous trapping of the SIAn in the vicinity and making these SIAns stuck nearby the GB. The SIAn in the stuck state surprisingly owes an exceptionally larger number of annihilation sites with vacancies near the GB than the SIAn trapped at the GB due to maintaining its bulk configuration basically. Besides, it also has an unexpectedly long-ranged repelling interaction with the SIA in the bulk region, which may further affect the GBs trap of the SIAn. The self-blocking effect might shed light on more critical and extended role of the GB in healing radiation-damage in NCs than previously recognized the GBs limited role based on GBs trap for the SIA and resulted vacancy-SIA recombination.
Design of nuclear materials with high radiation-tolerance has great significance1, especially for the next generation of nuclear energy systems2,3. Response of nano- and poly-crystals to irradiation depends on the radiation temperature, dose-rate and grain size4-13. However the dependencies had been studied and interpreted individually, and thus severely lacking is the ability to predict radiation performance of materials in extreme environments. Here we propose an operational window for radiation-resistant materials, which is based on a perspective of interactions among irradiation-induced interstitials, vacancies, and grain boundaries. Using atomic simulations, we find that healing grain boundaries needs much longer time than healing grain interiors. Not been noticed before, this finding suggests priority should be thereafter given to recovery of the grain boundary itself. This large disparity in healing time is reflected in the spectra of defects-recombination energy barriers by the presence of one high-barrier peak in addition to the peak of low barriers. The insight gained from the study instigates new avenues for examining the role of grain boundaries in healing the material. In particular, we sketch out the radiation-endurance window in the parameter space of temperature, dose-rate and grain size. The window helps evaluate material performance and develop resistant materials against radiation damage.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا