ترغب بنشر مسار تعليمي؟ اضغط هنا

Hypergraphs have been becoming a popular choice to model complex, non-pairwise, and higher-order interactions for recommender system. However, compared with traditional graph-based methods, the constructed hypergraphs are usually much sparser, which leads to a dilemma when balancing the benefits of hypergraphs and the modelling difficulty. Moreover, existing sequential hypergraph recommendation overlooks the temporal modelling among user relationships, which neglects rich social signals from the recommendation data. To tackle the above shortcomings of the existing hypergraph-based sequential recommendations, we propose a novel architecture named Hyperbolic Hypergraph representation learning method for Sequential Recommendation (H2SeqRec) with pre-training phase. Specifically, we design three self-supervised tasks to obtain the pre-training item embeddings to feed or fuse into the following recommendation architecture (with two ways to use the pre-trained embeddings). In the recommendation phase, we learn multi-scale item embeddings via a hierarchical structure to capture multiple time-span information. To alleviate the negative impact of sparse hypergraphs, we utilize a hyperbolic space-based hypergraph convolutional neural network to learn the dynamic item embeddings. Also, we design an item enhancement module to capture dynamic social information at each timestamp to improve effectiveness. Extensive experiments are conducted on two real-world datasets to prove the effectiveness and high performance of the model.
This paper utilizes well-designed item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendations. Compared with existing works that use heavy recurrent neural networks to model temporal information, we propose simple but effective neural networks to capture user historical item features and path-based context to characterise next purchased item. Extensive evaluations of TMER on three real-world benchmark datasets show state-of-the-art performance compared against recent strong baselines.
Recently, graph neural networks have been widely used for network embedding because of their prominent performance in pairwise relationship learning. In the real world, a more natural and common situation is the coexistence of pairwise relationships and complex non-pairwise relationships, which is, however, rarely studied. In light of this, we propose a graph neural network-based representation learning framework for heterogeneous hypergraphs, an extension of conventional graphs, which can well characterize multiple non-pairwise relations. Our framework first projects the heterogeneous hypergraph into a series of snapshots and then we take the Wavelet basis to perform localized hypergraph convolution. Since the Wavelet basis is usually much sparser than the Fourier basis, we develop an efficient polynomial approximation to the basis to replace the time-consuming Laplacian decomposition. Extensive evaluations have been conducted and the experimental results show the superiority of our method. In addition to the standard tasks of network embedding evaluation such as node classification, we also apply our method to the task of spammers detection and the superior performance of our framework shows that relationships beyond pairwise are also advantageous in the spammer detection.
Cross-platform account matching plays a significant role in social network analytics, and is beneficial for a wide range of applications. However, existing methods either heavily rely on high-quality user generated content (including user profiles) o r suffer from data insufficiency problem if only focusing on network topology, which brings researchers into an insoluble dilemma of model selection. In this paper, to address this problem, we propose a novel framework that considers multi-level graph convolutions on both local network structure and hypergraph structure in a unified manner. The proposed method overcomes data insufficiency problem of existing work and does not necessarily rely on user demographic information. Moreover, to adapt the proposed method to be capable of handling large-scale social networks, we propose a two-phase space reconciliation mechanism to align the embedding spaces in both network partitioning based parallel training and account matching across different social networks. Extensive experiments have been conducted on two large-scale real-life social networks. The experimental results demonstrate that the proposed method outperforms the state-of-the-art models with a big margin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا