ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - S. Ovyn , X. Rouby , V. Lemaitre 2009
This paper presents a new C++ framework, DELPHES, performing a fast multipurpose detector response simulation. The simulation includes a tracking system, embedded into a magnetic field, calorimeters and a muon system, and possible very forward detect ors arranged along the beamline. The framework is interfaced to standard file formats (e.g. Les Houches Event File or HepMC) and outputs observables such as isolated leptons, missing transverse energy and collection of jets which can be used for dedicated analyses. The simulation of the detector response takes into account the effect of magnetic field, the granularity of the calorimeters and subdetector resolutions. A simplified preselection can also be applied on processed events for trigger emulation. Detection of very forward scattered particles relies on the transport in beamlines with the HECTOR software. Finally, the FROG 2D/3D event display is used for visualisation of the collision final states.
232 - X. Rouby 2008
Photon interactions at the LHC result in striking final states with much lower hadronic activity in the central detectors than for pp interactions. In addition, the elastic exchange of a photon leads to a proton scattered at almost zero-degree angle. Tagging photon interactions relies on either the use of large rapidity gaps or on the detection of the scattered proton using very forward detectors. The studies related to such detectors are presented, including their characterization, their acceptance and reconstruction performance. Limitations due to the LHC beamline misalignment and possible solutions are also given.
Computing the trajectories of particles in generic beamlines is an important ingredient of experimental particle physics, in particular regarding near-beam detectors. A new tool, Hector, has been built for such calculations, using the transfer matrix approach and energy corrections. The limiting aperture effects are also taken into account. As an illustration, the tool was used to simulate the LHC beamlines, in particular around the high luminosity interaction points (IPs), and validated with results of the Mad-X simulator. The LHC beam profiles, trajectories and beta functions are presented. Assuming certain forward proton detector scenarios around the IP5, acceptance plots, irradiation doses and chromaticity grids are produced. Furthermore, the reconstruction of proton kinematic variables at the IP (energy and angle) is studied as well as the impact of the misalignment of beamline elements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا