ترغب بنشر مسار تعليمي؟ اضغط هنا

Hector, a fast simulator for the transport of particles in beamlines

357   0   0.0 ( 0 )
 نشر من قبل Xavier Rouby
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Computing the trajectories of particles in generic beamlines is an important ingredient of experimental particle physics, in particular regarding near-beam detectors. A new tool, Hector, has been built for such calculations, using the transfer matrix approach and energy corrections. The limiting aperture effects are also taken into account. As an illustration, the tool was used to simulate the LHC beamlines, in particular around the high luminosity interaction points (IPs), and validated with results of the Mad-X simulator. The LHC beam profiles, trajectories and beta functions are presented. Assuming certain forward proton detector scenarios around the IP5, acceptance plots, irradiation doses and chromaticity grids are produced. Furthermore, the reconstruction of proton kinematic variables at the IP (energy and angle) is studied as well as the impact of the misalignment of beamline elements.

قيم البحث

اقرأ أيضاً

We introduce a novel strategy for machine-learning-based fast simulators, which is the first that can be trained in an unsupervised manner using observed data samples to learn a predictive model of detector response and other difficult-to-model trans formations. Across the physical sciences, a barrier to interpreting observed data is the lack of knowledge of a detectors imperfect resolution, which transforms and obscures the unobserved latent data. Modeling this detector response is an essential step for statistical inference, but closed-form models are often unavailable or intractable, requiring the use of computationally expensive, ad-hoc numerical simulations. Using particle physics detectors as an illustrative example, we describe a novel strategy for a fast, predictive simulator called Optimal Transport based Unfolding and Simulation (OTUS), which uses a probabilistic autoencoder to learn this transformation directly from observed data, rather than from existing simulations. Unusually, the probabilistic autoencoders latent space is physically meaningful, such that the decoder becomes a fast, predictive simulator for a new latent sample, and has the potential to replace Monte Carlo simulators. We provide proof-of-principle results for $Z$-boson and top-quark decays, but stress that our approach can be widely applied to other physical science fields.
The Centre for the Clinical Application of Particles Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.
We develop a new heavy quark transport model, QLBT, to simulate the dynamical propagation of heavy quarks inside the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. Our QLBT model is based on the linear Boltzmann transport (LBT ) model with the ideal QGP replaced by a collection of quasi-particles to account for the non-perturbative interactions among quarks and gluons of the hot QGP. The thermal masses of quasi-particles are fitted to the equation of state from lattice QCD simulations using the Bayesian statistical analysis method. Combining QLBT with our advanced hybrid fragmentation-coalescence hadronization approach, we calculate the nuclear modification factor $R_mathrm{AA}$ and the elliptic flow $v_2$ of $D$ mesons at the Relativistic Heavy-Ion Collider and the Large Hadron Collider. By comparing our QLBT calculation to the experimental data on the $D$ meson $R_mathrm{AA}$ and $v_2$, we extract the heavy quark transport parameter $hat{q}$ and diffusion coefficient $D_mathrm{s}$ in the temperature range of $1-4~T_mathrm{c}$, and compare them with the lattice QCD results and other phenomenological studies.
Cascades from high-energy particles produce a brief current and associated magnetic fields. Even sub-nanosecond duration magnetic fields can be detected with a relatively low bandwidth system by latching image currents on a capacitor. At accelerators , this technique is employed routinely by beam-current monitors, which work for pulses even as fast as femtoseconds. We discuss scaling up these instruments in size, to 100 meters and beyond, to serve as a new kind of ground- and space-based high-energy particle detector which can instrument large areas relatively inexpensively. This new technique may be used to detect and/or veto ultra-high energy cosmic-ray showers above 100 PeV. It may also be applied to searches for hypothetical highly charged particles. In addition, these detectors may serve to search for extremely short magnetic field pulses of any origin, faster than other detectors by orders of magnitude.
The transport of neutrons in long beamlines at spallation neutron sources presents a unique challenge for Monte-Carlo transport calculations. This is due to the need to accurately model the deep-penetration of high-energy neutrons through meters of t hick dense shields close to the source and at the same time to model the transport of low-energy neutrons across distances up to around 150 m in length. Typically, such types of calculations may be carried out with MCNP-based codes or alternatively PHITS. However, in recent years there has been an increased interest in the suitability of Geant4 for such types of calculations. Therefore, we have implemented supermirror physics, a neutron chopper module and the duct-source variance reduction technique for low-energy neutron transport from the PHITS Monte-Carlo code into Geant4. In the current work, we present a series of benchmarks of these extensions with the PHITS software, which demonstrates the suitability of Geant4 for simulating long neutron beamlines at a spallation neutron source, such as the European Spallation Source, currently under construction in Lund, Sweden.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا