ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent deep-learning models have achieved impressive prediction performance, but often sacrifice interpretability and computational efficiency. Interpretability is crucial in many disciplines, such as science and medicine, where models must be carefu lly vetted or where interpretation is the goal itself. Moreover, interpretable models are concise and often yield computational efficiency. Here, we propose adaptive wavelet distillation (AWD), a method which aims to distill information from a trained neural network into a wavelet transform. Specifically, AWD penalizes feature attributions of a neural network in the wavelet domain to learn an effective multi-resolution wavelet transform. The resulting model is highly predictive, concise, computationally efficient, and has properties (such as a multi-scale structure) which make it easy to interpret. In close collaboration with domain experts, we showcase how AWD addresses challenges in two real-world settings: cosmological parameter inference and molecular-partner prediction. In both cases, AWD yields a scientifically interpretable and concise model which gives predictive performance better than state-of-the-art neural networks. Moreover, AWD identifies predictive features that are scientifically meaningful in the context of respective domains. All code and models are released in a full-fledged package available on Github (https://github.com/Yu-Group/adaptive-wavelets).
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method~(Fountoulakis et. al.) for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method. From a computational perspective, we show that the solution path of l1-regularized PageRank is monotonic. This allows for the application of the forward stagewise algorithm, which approximates the solution path in running time that does not depend on the size of the whole graph. Finally, we show that l1-regularized PageRank and approximate personalized PageRank (APPR), another very popular method for local graph clustering, are equivalent in the sense that we can lower and upper bound the output of one with the output of the other. Based on this relation, we establish for APPR similar results to those we establish for l1-regularized PageRank.
We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct an x-ray spectrum that can accurately model the x-ray transmission curves and reflects a realistic shape of the typical energy spectra o f the CT system. To this end, spectrum estimation is posed as an optimization problem with x-ray spectrum as unknown variables, and a Kullback-Leibler (KL) divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiated-gradient (EG) algorithm. We demonstrate the effectiveness of the proposed approach on the simulated and experimental data. The comparison to the expectation-maximization (EM) method is also discussed. In simulations, the proposed algorithm is seen to yield x-ray spectra that closely match the ground truth and represent the attenuation process of x-ray photons in materials, both included and not included in the estimation process. In experiments, the calculated transmission curve is in good agreement with the measured transmission curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable performance between the proposed optimization-based approach and EM. In conclusion, our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum estimation. Moreover, a KL-divergence constraint can include a prior spectrum and appears to capture important features of x-ray spectrum, allowing accurate and robust estimation of x-ray spectrum in CT imaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا