ترغب بنشر مسار تعليمي؟ اضغط هنا

The recent detection of a 3.5 keV X-ray line from the centres of galaxies and clusters by Bulbul et al. (2014a) and Boyarsky et al. (2014a) has been interpreted as emission from the decay of 7 keV sterile neutrinos which could make up the (warm) dark matter (WDM). As part of the COpernicus COmplexio (COCO) programme, we investigate the properties of dark matter haloes formed in a high-resolution cosmological $N$-body simulation from initial conditions similar to those expected in a universe in which the dark matter consists of 7 keV sterile neutrinos. This simulation and its cold dark matter (CDM) counterpart have $sim13.4$bn particles, each of mass $sim 10^5, h^{-1} M_odot$, providing detailed information about halo structure and evolution down to dwarf galaxy mass scales. Non-linear structure formation on small scales ($M_{200}, leq, 2 times 10^9,h^{-1},M_odot$) begins slightly later in COCO-Warm than in COCO-Cold. The halo mass function at the present day in the WDM model begins to drop below its CDM counterpart at a mass $sim 2 times 10^{9},h^{-1},M_odot$ and declines very rapidly towards lower masses so that there are five times fewer haloes of mass $M_{200}= 10^{8},h^{-1},M_odot$ in COCO-Warm than in COCO-Cold. Halo concentrations on dwarf galaxy scales are correspondingly smaller in COCO-Warm, and we provide a simple functional form that describes its evolution with redshift. The shapes of haloes are similar in the two cases, but the smallest haloes in COCO-Warm rotate slightly more slowly than their CDM counterparts.
We introduce Copernicus Complexio (COCO), a high-resolution cosmological N-body simulation of structure formation in the $Lambda{rm CDM}{}$ model. COCO follows an approximately spherical region of radius $sim 17.4h^{-1},{rm Mpc}$ embedded in a much l arger periodic cube that is followed at lower resolution. The high resolution volume has a particle mass of $1.135times10^5h^{-1}{rm M}_{odot}$ (60 times higher than the Millennium-II simulation). COCO gives the dark matter halo mass function over eight orders of magnitude in halo mass; it forms $sim 60$ haloes of galactic size, each resolved with about 10 million particles. We confirm the power-law character of the subhalo mass function, $bar{N}(>mu)proptomu^{-s}$, down to a reduced subhalo mass $M_{sub}/M_{200}equivmu=10^{-6}$, with a best-fit power-law index, $s=0.94$, for hosts of mass $langle M_{200}rangle=10^{12}h^{-1}{rm M}_{odot}$. The concentration-mass relation of COCO haloes deviates from a single power law for masses $M_{200}<textrm{a few}times 10^{8}h^{-1}{rm M}_{odot}$, where it flattens, in agreement with results by Sanchez-Conde et al. The host mass invariance of the reduced maximum circular velocity function of subhaloes, $ uequiv V_{max}/V_{200}$, hinted at in previous simulations, is clearly demonstrated over five orders of magnitude in host mass. Similarly, we find that the average, normalised radial distribution of subhaloes is approximately universal (i.e. independent of subhalo mass), as previously suggested by the Aquarius simulations of individual haloes. Finally, we find that at fixed physical subhalo size, subhaloes in lower mass hosts typically have lower central densities than those in higher mass hosts.
We present results of analysis of the dark matter (DM) pairwise velocity statistics in different Cosmic Web environments. We use the DM velocity and density field from the Millennium 2 simulation together with the NEXUS+ algorithm to segment the simu lation volume into voxels uniquely identifying one of the four possible environments: nodes, filaments, walls or cosmic voids. We show that the PDFs of the mean infall velocities $v_{12}$ as well as its spatial dependence together with the perpendicular and parallel velocity dispersions bear a significant signal of the large-scale structure environment in which DM particle pairs are embedded. The pairwise flows are notably colder and have smaller mean magnitude in wall and voids, when compared to much denser environments of filaments and nodes. We discuss on our results, indicating that they are consistent with a simple theoretical predictions for pairwise motions as induced by gravitational instability mechanism. Our results indicate that the Cosmic Web elements are coherent dynamical entities rather than just temporal geometrical associations. In addition it should be possible to observationally test various Cosmic Web finding algorithms by segmenting available peculiar velocity data and studying resulting pairwise velocity statistics
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution, $v_{12}$, are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion, $sigma_{12}(r)$, is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon fR gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from General Relativity at the $(5-10)sigma$ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a smoking gun for modified gravity.
In this contribution we present the preliminary results regarding the non-linear BAO signal in higher-order statistics of the cosmic density field. We use ensembles of N-body simulations to show that the non-linear evolution changes the amplitudes of the BAO signal, but has a negligible effect on the scale of the BAO feature. The latter observation accompanied by the fact that the BAO feature amplitude roughly doubles as one moves to higher orders, suggests that the higher-order correlation amplitudes can be used as probe of the BAO signal.
134 - Baojiu Li 2012
We study the matter and velocity divergence power spectra in a f(R) gravity theory and their time evolution measured from several large-volume N-body simulations with varying box sizes and resolution. We find that accurate prediction of the matter po wer spectrum in f(R) gravity places stronger requirements on the simulation than is the case with LCDM, because of the nonlinear nature of the fifth force. Linear perturbation theory is shown to be a poor approximation for the f(R) models, except when the chameleon effect is very weak. We show that the relative differences from the fiducial LCDM model are much more pronounced in the nonlinear tail of the velocity divergence power spectrum than in the matter power spectrum, which suggests that future surveys which target the collection of peculiar velocity data will open new opportunities to constrain modified gravity theories. A close investigation of the time evolution of the power spectra shows that there is a pattern in the evolution history, which can be explained by the properties of the chameleon-type fifth force in f(R) gravity. Varying the model parameter |f_R0|, which quantifies the strength of the departure from standard gravity, mainly varies the epoch marking the onset of the fifth force, as a result of which the different f(R) models are in different stages of the same evolutionary path at any given time
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا