ترغب بنشر مسار تعليمي؟ اضغط هنا

The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work [A. J. Williamson et al., Phys. Rev. Lett. 87, 2464 06 (2001); D. Alf`e and M. J. Gillan, Phys. Rev. B 70, 161101 (2004)] has demonstrated the reduction of the O(N^3) cost of evaluating the Slater determinant with planewaves to O(N^2) using localized basis functions. We compare four polynomial approximations as basis functions -- interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO and smoothing B-splines most closely reproduce the planewave value for of the variational Monte Carlo energy. Using separate approximations for the Laplacian of the orbitals increases the accuracy sufficiently to justify the increased memory requirement, making smoothing B-splines, with separate approximation for the Laplacian, the preferred choice for approximating planewave-represented orbitals in QMC calculations.
Quantum Monte Carlo approaches such as the diffusion Monte Carlo (DMC) method are among the most accurate many-body methods for extended systems. Their scaling makes them well suited for defect calculations in solids. We review the various approximat ions needed for DMC calculations of solids and the results of previous DMC calculations for point defects in solids. Finally, we present estimates of how approximations affect the accuracy of calculations for self-interstitial formation energies in silicon and predict DMC values of 4.4(1), 5.1(1) and 4.7(1) eV for the X, T and H interstitial defects, respectively, in a 16(+1)-atom supercell.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا