ترغب بنشر مسار تعليمي؟ اضغط هنا

LSTM language models (LSTM-LMs) have been proven to be powerful and yielded significant performance improvements over count based n-gram LMs in modern speech recognition systems. Due to its infinite history states and computational load, most previou s studies focus on applying LSTM-LMs in the second-pass for rescoring purpose. Recent work shows that it is feasible and computationally affordable to adopt the LSTM-LMs in the first-pass decoding within a dynamic (or tree based) decoder framework. In this work, the LSTM-LM is composed with a WFST decoder on-the-fly for the first-pass decoding. Furthermore, motivated by the long-term history nature of LSTM-LMs, the use of context beyond the current utterance is explored for the first-pass decoding in conversational speech recognition. The context information is captured by the hidden states of LSTM-LMs across utterance and can be used to guide the first-pass search effectively. The experimental results in our internal meeting transcription system show that significant performance improvements can be obtained by incorporating the contextual information with LSTM-LMs in the first-pass decoding, compared to applying the contextual information in the second-pass rescoring.
Current approaches to explaining the decisions of deep learning systems for medical tasks have focused on visualising the elements that have contributed to each decision. We argue that such approaches are not enough to open the black box of medical d ecision making systems because they are missing a key component that has been used as a standard communication tool between doctors for centuries: language. We propose a model-agnostic interpretability method that involves training a simple recurrent neural network model to produce descriptive sentences to clarify the decision of deep learning classifiers. We test our method on the task of detecting hip fractures from frontal pelvic x-rays. This process requires minimal additional labelling despite producing text containing elements that the original deep learning classification model was not specifically trained to detect. The experimental results show that: 1) the sentences produced by our method consistently contain the desired information, 2) the generated sentences are preferred by doctors compared to current tools that create saliency maps, and 3) the combination of visualisations and generated text is better than either alone.
We developed an automated deep learning system to detect hip fractures from frontal pelvic x-rays, an important and common radiological task. Our system was trained on a decade of clinical x-rays (~53,000 studies) and can be applied to clinical data, automatically excluding inappropriate and technically unsatisfactory studies. We demonstrate diagnostic performance equivalent to a human radiologist and an area under the ROC curve of 0.994. Translated to clinical practice, such a system has the potential to increase the efficiency of diagnosis, reduce the need for expensive additional testing, expand access to expert level medical image interpretation, and improve overall patient outcomes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا