ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern surveys of gravitational microlensing events have progressed to detecting thousands per year. Surveys are capable of probing Galactic structure, stellar evolution, lens populations, black hole physics, and the nature of dark matter. One of the key avenues for doing this is studying the microlensing Einstein radius crossing time distribution ($t_E$). However, systematics in individual light curves as well as over-simplistic modeling can lead to biased results. To address this, we developed a model to simultaneously handle the microlensing parallax due to Earths motion, systematic instrumental effects, and unlensed stellar variability with a Gaussian Process model. We used light curves for nearly 10,000 OGLE-III and IV Milky Way bulge microlensing events and fit each with our model. We also developed a forward model approach to infer the timescale distribution by forward modeling from the data rather than using point estimates from individual events. We find that modeling the variability in the baseline removes a source of significant bias in individual events, and previous analyses over-estimated the number of long timescale ($t_E>100$ days) events due to their over simplistic models ignoring parallax effects and stellar variability. We use our fits to identify hundreds of events that are likely black holes.
Golovich et al. 2017b presents an optical imaging and spectroscopic survey of 29 radio relic merging galaxy clusters. In this paper, we study this survey to identify substructure and quantify the dynamics of the mergers. Using a combined photometric and spectroscopic approach, we identify the minimum number of substructures in each system to describe the galaxy populations and estimate the line of sight velocity difference between likely merging subclusters. We find that the line-of-sight velocity components of the mergers are typically small compared with the maximum three dimensional relative velocity (usually $<1000$ km s$^{-1}$ and often consistent with zero). This suggests that the merger axes of these systems are generally in or near the plane of the sky matching findings in magneto-hydrodynamical simulations. In 28 of the 29 systems we identify substructures in the galaxy population aligned with the radio relic(s) and presumed associated merger induced shock. From this ensemble, we identify eight systems to include in a `gold sample that is prime for further observation, modeling, and simulation study. Additional papers will present weak lensing mass maps and dynamical modeling for each merging system, ultimately leading to new insight into a wide range of astrophysical phenomena at some of the largest scales in the universe.
Multi-band photometric and multi-object spectroscopic surveys of merging galaxy clusters allow for the characterization of the distributions of constituent dark matter and galaxy populations, constraints on the dynamics of the merging subclusters, an d an understanding of galaxy evolution of member galaxies. We present deep photometric observations from Subaru/SuprimeCam and a catalog of $sim$5400 spectroscopic cluster members from Keck/DEIMOS across 29 merging galaxy clusters ranging in redshift from $z=0.07$ to $0.55$. The ensemble is compiled based on the presence of radio relics, which highlight cluster scale collisionless shocks in the intra-cluster medium. Together with the spectroscopic and photometric information, the velocities, timescales, and geometries of the respective merging events may be tightly constrained. In this preliminary analysis, the velocity distributions of 28 of the 29 clusters are shown to be well fit by single Gaussians. This indicates that radio relic mergers largely occur transverse to the line of sight and/or near apocenter. In this paper, we present our optical and spectroscopic surveys, preliminary results, and a discussion of the value of radio relic mergers for developing accurate dynamical models of each system.
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-size radio sources have been found, so-called radio relics. These relics are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach number collisionless shocks generated by cluster-cluster merger events. A long-standing problem is how low-Mach number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here we report on the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.
We have developed a maximum likelihood source detection method capable of detecting ultra-faint streaks with surface brightnesses approximately an order of magnitude fainter than the pixel level noise. Our maximum likelihood detection method is a mod el based approach that requires no a priori knowledge about the streak location, orientation, length, or surface brightness. This method enables discovery of typically undiscovered objects, and enables the utilization of low-cost sensors (i.e., higher-noise data). The method also easily facilitates multi-epoch co-addition. We will present the results from the application of this method to simulations, as well as real low earth orbit observations.
The galaxy cluster RX J0603.3+4214 at z=0.225 is one of the rarest clusters boasting an extremely large (~2 Mpc) radio-relic. Because of the remarkable morphology of the relic, the cluster is nicknamed Toothbrush Cluster. Although the clusters underl ying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio-relic morphology, its proximity to the Galactic plane b~10 deg has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is comprised of complicated dark matter substructures closely tracing the galaxy distribution, however in contrast with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a ~3:1 mass ratio (M_{200}=6.29_{-1.62}^{+2.24} x 10^{14} Msun and 1.98_{-0.74}^{+1.24} x 10^{14} Msun for the northern and southern clumps, respectively). The southern mass peak is ~2 offset toward the south with respect to the corresponding X-ray peak, which has a bullet-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio-relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional sub-clusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations.
X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We c arried out a deep (i<25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which is the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter. We find that the system is dominated by two subclusters of comparable richness with a projected separation of 6.9^{+0.7}_{-0.5} (1.3^{+0.13}_{-0.10} Mpc). We find that the north and south subclusters have similar redshifts of z=0.188 with a relative line-of-sight velocity difference of 69+/-190 km/s. We also find that north and south subclusters have velocity dispersions of 1160^{+100}_{-90} km/s and 1080^{+100}_{-70} km/s, respectively. These correspond to masses of 16.1^{+4.6}_{-3.3}x10^14 M_sun and 13.0^{+4.0}_{-2.5}x10^14 M_sun, respectively. While velocity dispersion measurements of merging clusters can be biased we believe the bias in this system to be minor due to the large projected separation and nearly plane-of-sky merger configuration. CIZA J2242.8+5301 is a relatively clean dissociative cluster merger with near 1:1 mass ratio, which makes it an ideal merger for studying merger associated physical phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا