ترغب بنشر مسار تعليمي؟ اضغط هنا

The accuracy of available channel state information (CSI) directly affects the performance of millimeter wave (mmWave) communications. In this article, we provide an overview on CSI acquisition including beam training and channel estimation for mmWav e massive multiple-input multiple-output systems. The beam training can avoid the estimation of a large-dimension channel matrix while the channel estimation can flexibly exploit advanced signal processing techniques. After discussing the traditional and machine learning-based approaches in this article, we compare different approaches in terms of spectral efficiency, computational complexity, and overhead.
Channel estimation and hybrid precoding are considered for multi-user millimeter wave massive multi-input multi-output system. A deep learning compressed sensing (DLCS) channel estimation scheme is proposed. The channel estimation neural network for the DLCS scheme is trained offline using simulated environments to predict the beamspace channel amplitude. Then the channel is reconstructed based on the obtained indices of dominant beamspace channel entries. A deep learning quantized phase (DLQP) hybrid precoder design method is developed after channel estimation. The training hybrid precoding neural network for the DLQP method is obtained offline considering the approximate phase quantization. Then the deployment hybrid precoding neural network (DHPNN) is obtained by replacing the approximate phase quantization with ideal phase quantization and the output of the DHPNN is the analog precoding vector. Finally, the analog precoding matrix is obtained by stacking the analog precoding vectors and the digital precoding matrix is calculated by zero-forcing. Simulation results demonstrate that the DLCS channel estimation scheme outperforms the existing schemes in terms of the normalized mean-squared error and the spectral efficiency, while the DLQP hybrid precoder design method has better spectral efficiency performance than other methods with low phase shifter resolution.
In this paper, we develop two high-resolution channel estimation schemes based on the estimating signal parameters via the rotational invariance techniques (ESPRIT) method for frequency-selective millimeter wave (mmWave) massive MIMO systems. The fir st scheme is based on two-dimensional ESPRIT (TDE), which includes three stages of pilot transmission. This scheme first estimates the angles of arrival (AoA) and angles of departure (AoD) and then pairs the AoA and AoD. The other scheme reduces the pilot transmission from three stages to two stages and therefore reduces the pilot overhead. It is based on one-dimensional ESPRIT and minimum searching (EMS). It first estimates the AoD of each channel path and then searches the minimum from the identified mainlobe. To guarantee the robust channel estimation performance, we also develop a hybrid precoding and combining matrices design method so that the received signal power keeps almost the same for any AoA and AoD. Finally, we demonstrate that the proposed two schemes outperform the existing channel estimation schemes in terms of computational complexity and performance.
This article investigates beam alignment for multi-user millimeter wave (mmWave) massive multi-input multi-output system. Unlike the existing works using machine learning (ML), an alignment method with partial beams using ML (AMPBML) is proposed with out any prior knowledge such as user location information. The neural network (NN) for the AMPBML is trained offline using simulated environments according to the mmWave channel model and is then deployed online to predict the beam distribution vector using partial beams. Afterwards, the beams for all users are all aligned simultaneously based on the indices of the dominant entries of the obtained beam distribution vector. Simulation results demonstrate that the AMPBML outperforms the existing methods, including the adaptive compressed sensing, hierarchical search, and multi-path decomposition and recovery, in terms of the total training time slots and the spectral efficiency.
92 - Wenyan Ma , Chenhao Qi 2019
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of o ver-sampled beamspace receiving matrix. Then based on the framework, three channel estimation schemes including identity matrix approximation (IA)-based scheme, scattered zero off-diagonal (SZO)-based scheme and concentrated zero off-diagonal (CZO)-based scheme are proposed. These schemes together with the existing channel estimation schemes are compared in terms of computational complexity, estimation error and total time slots for channel training. Simulation results show that the proposed schemes outperform the existing schemes and can approach the performance of the ideal case. In particular, total time slots for channel training can be substantially reduced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا