ﻻ يوجد ملخص باللغة العربية
In this paper, we develop two high-resolution channel estimation schemes based on the estimating signal parameters via the rotational invariance techniques (ESPRIT) method for frequency-selective millimeter wave (mmWave) massive MIMO systems. The first scheme is based on two-dimensional ESPRIT (TDE), which includes three stages of pilot transmission. This scheme first estimates the angles of arrival (AoA) and angles of departure (AoD) and then pairs the AoA and AoD. The other scheme reduces the pilot transmission from three stages to two stages and therefore reduces the pilot overhead. It is based on one-dimensional ESPRIT and minimum searching (EMS). It first estimates the AoD of each channel path and then searches the minimum from the identified mainlobe. To guarantee the robust channel estimation performance, we also develop a hybrid precoding and combining matrices design method so that the received signal power keeps almost the same for any AoA and AoD. Finally, we demonstrate that the proposed two schemes outperform the existing channel estimation schemes in terms of computational complexity and performance.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links conne
Channel estimation is challenging for the reconfigurable intelligence surface (RIS) assisted millimeter wave (mmWave) communications. Since the number of coefficients of the cascaded channels in such systems is closely dependent on the product of the
In this paper, we tackle channel estimation in millimeter-wave hybrid multiple-input multiple-output systems by considering off-grid effects. In particular, we assume that spatial parameters can take any value in the angular domain, and need not fall
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal co
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a le