ترغب بنشر مسار تعليمي؟ اضغط هنا

The binary pnictide semimetals have attracted considerable attention due to their fantastic physical properties that include topological effects, negative magnetoresistance, Weyl fermions and large non-saturation magnetoresistance. In this paper, we have successfully grown the high-quality V1-deltaSb2 single crystals by Sb flux method and investigated their electronic transport properties. A large positive magnetoresistance that reaches 477% under a magnetic field of 12 T at T = 1.8 K was observed. Notably, the magnetoresistance showed a cusp-like feature at the low magnetic fields and such feature weakened gradually as the temperature increased, which indicated the presence of weak antilocalization effect (WAL). The angle-dependent magnetoconductance and the ultra-large prefactor alpha extracted from the Hikami-Larkin-Nagaoka equation revealed that the WAL effect is a 3D bulk effect originated from the three-dimensional bulk spin-orbital coupling.
EuSn2As2 with layered rhombohedral crystal structure is proposed to be a candidate of intrinsic antiferromagnetic (AFM) topological insulator. Here, we have investigated systematic magnetoresistance (MR) and magnetization measurements on the high qua lity EuSn2As2 single crystal with the magnetic field both parallel and perpendicular to (00l) plane. Both the kink of magnetic susceptibility and longitudinal resistivity reveal that EuSn2An2 undergoes an AFM transition at TN = 21 K. At T = 2 K, the magnetization exhibits two successive plateaus of ~ 5.6 {mu}B/Eu and ~ 6.6 {mu}B/Eu at the corresponding critical magnetic fields. Combined with the negative longitudinal MR and abnormal Hall resistance, we demonstrate that EuSn2An2 undergoes complicated magnetic transitions from an AFM state to a canted ferromagnetic (FM) state at Hc and then to a polarized FM state at Hs as the magnetic field increase.
We present the systematic de Haas-van Alphen (dHvA) quantum oscillations studies on the recently discovered topological Dirac semimetal pyrite PtBi2 single crystals. Remarkable dHvA oscillations were observed at field as low as 1.5 T. From the analys es of dHvA oscillations, we have extracted high quantum mobility, light effective mass and phase shift factor for Dirac fermions in pyrite PtBi2. From the angular dependence of dHvA oscillations, we have mapped out the topology of the Fermi surface and identified additional oscillation frequencies which were not probed by SdH oscillations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا