ترغب بنشر مسار تعليمي؟ اضغط هنا

de Haas-van Alphen study on three-dimensional topological semimetal pyrite PtBi2

97   0   0.0 ( 0 )
 نشر من قبل Wei Ning
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the systematic de Haas-van Alphen (dHvA) quantum oscillations studies on the recently discovered topological Dirac semimetal pyrite PtBi2 single crystals. Remarkable dHvA oscillations were observed at field as low as 1.5 T. From the analyses of dHvA oscillations, we have extracted high quantum mobility, light effective mass and phase shift factor for Dirac fermions in pyrite PtBi2. From the angular dependence of dHvA oscillations, we have mapped out the topology of the Fermi surface and identified additional oscillation frequencies which were not probed by SdH oscillations.



قيم البحث

اقرأ أيضاً

We report the magneto-transport properties of CaAl$_4$ single crystals with $C2/m$ structure at low temperature. CaAl$_4$ exhibits large unsaturated magnetoresistance $sim$3000$%$ at 2.5 K and 14 T. The nonlinear Hall resistivity is observed, which i ndicates the multi-band feature. The first-principles calculations show the electron-hole compensation and the complex Fermi surface in CaAl$_4$, to which the two-band model with over-simplified carrier mobility cant completely apply. Evident quantum oscillations have been observed with B//c and B//ab configurations, from which the nontrivial Berry phase is extracted by the multi-band Lifshitz-Kosevich formula fitting. An electron-type quasi-2D Fermi surface is found by the angle-dependent Shubnikov-de Haas oscillations, de Haas-van Alphen oscillations and the first-principles calculations. The calculations also elucidate that CaAl$_4$ owns a Dirac nodal line type band structure around the $Gamma$ point in the $Z$-$Gamma$-$L$ plane, which is protected by the mirror symmetry as well as the space inversion and time reversal symmetries. Once the spin-orbit coupling is included, the crossed nodal line opens a negligible gap (less than 3 meV). The open-orbit topology is also found in the electron-type Fermi surfaces, which is believed to help enhance the magnetoresistance observed.
294 - Zheng Chen , Min Wu , Yong Zhang 2020
Layered three-dimensional (3D) topological semimetals have attracted intensively attention due to the exotic phenomena and abundantly tunable properties. Here we report the experimental evidence for the 3D topological semimetal phase in layered mater ial TaNiTe5 single crystals through quantum oscillations. Strong quantum oscillations have been observed with diamagnetism background in TaNiTe5. By analyzing the de Haas-van Alphen oscillations, multi-periodic oscillations were extracted, in content with magnetotransport measurements. Moreover, nontrivial {pi} Berry phase with 3D Fermi surface is identified, indicating the topologically nontrivial feature in TaNiTe5. Additionally, we demonstrated the thin-layer of TaNiTe5 crystals is highly feasible by the mechanical exfoliation, which offers a platform to explore exotic properties in low dimensional topological semimetal and paves the way for potential applications in nanodevices.
In the search of topological superconductors, nailing down the Fermiology of the normal state is as crucial a prerequisite as unraveling the superconducting pairing symmetry. In particular, the number of time-reversal-invariant momenta in the Brillou in zone enclosed by Fermi surfaces is closely linked to the topological class of time-reversal-invariant systems, and can experimentally be investigated. We report here a detailed study of de Haas van Alphen quantum oscillations in single crystals of the topological semimetal CaSn$_{3}$ with torque magnetometry in high magnetic fields up to 35 T. In conjunction with density functional theory based calculations, the observed quantum oscillations frequencies indicate that the Fermi surfaces of CaSn$_{3}$ enclose an odd number of time-reversal-invariant momenta, satisfying one of the proposed criteria to realize topological superconductivity. Nonzero Berry phases extracted from the magnetic oscillations also support the nontrivial topological nature of CaSn$_{3}$.
200 - Kejie Fang , Shanhui Fan 2013
Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effe ct magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.
The de Haas - van Alphen effect in two-dimensional (2D) metals is investigated at different conditions and with different shapes of Landau levels (LLs). The analytical calculations can be done when many LLs are occupied. We consider the cases of fixe d particle number ($N=const$), fixed chemical potential ($mu =const$) and the intermediate situation of finite electron reservoir. The last case takes place in organic metals due to quasi-one-dimensional sheets of Fermi surface. We obtained the envelopes of magnetization oscillations in all these cases in the limit of low temperature and Dingle temperature, where the oscillations can not be approximated by few first terms in the harmonic expansion. The results are compared and shown to be substantially different for different shapes of LLs. The simple relation between the shape of LLs and the wave form of magnetization oscillations is found. It allows to obtain the density of states distribution at arbitrary magnetic field and spin-splitting using the measurement of the magnetization curve. The analytical formula for the magnetization at $mu =const$ and the Lorentzian shape of LLs at arbitrary temperature, Dingle temperature and spin splitting is obtained and used to examine the possibility of the diamagnetic phase transition in 2D metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا