ترغب بنشر مسار تعليمي؟ اضغط هنا

Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details such as limb movement may be lost. To predict more accurate future human motion, we propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation. Specifically, we take both the historical motion sequences and coarse prediction as input of our cascaded refinement network to predict refined human motion and strengthen the refinement network with adversarial error augmentation. During training, we deliberately introduce the error distribution by learning through the adversarial mechanism among different subjects. In testing, our cascaded refinement network alleviates the prediction error from the coarse predictor resulting in a finer prediction robustly. This adversarial error augmentation provides rich error cases as input to our refinement network, leading to better generalization performance on the testing dataset. We conduct extensive experiments on three standard benchmark datasets and show that our proposed ARNet outperforms other state-of-the-art methods, especially on challenging aperiodic actions in both short-term and long-term predictions.
Caricature is an artistic drawing created to abstract or exaggerate facial features of a person. Rendering visually pleasing caricatures is a difficult task that requires professional skills, and thus it is of great interest to design a method to aut omatically generate such drawings. To deal with large shape changes, we propose an algorithm based on a semantic shape transform to produce diverse and plausible shape exaggerations. Specifically, we predict pixel-wise semantic correspondences and perform image warping on the input photo to achieve dense shape transformation. We show that the proposed framework is able to render visually pleasing shape exaggerations while maintaining their facial structures. In addition, our model allows users to manipulate the shape via the semantic map. We demonstrate the effectiveness of our approach on a large photograph-caricature benchmark dataset with comparisons to the state-of-the-art methods.
101 - Shuai Zhao , Boxi Wu , Wenqing Chu 2019
Most semantic segmentation models treat semantic segmentation as a pixel-wise classification task and use a pixel-wise classification error as their optimization criterions. However, the pixel-wise error ignores the strong dependencies among the pixe ls in an image, which limits the performance of the model. Several ways to incorporate the structure information of the objects have been investigated, eg, conditional random fields (CRF), image structure priors based methods, and generative adversarial network (GAN). Nevertheless, these methods usually require extra model branches or additional memories, and some of them show limited improvements. In contrast, we propose a simple yet effective structural similarity loss (SSL) to encode the structure information of the objects, which only requires a few additional computational resources in the training phase. Inspired by the widely-used structural similarity (SSIM) index in image quality assessment, we use the linear correlation between two images to quantify their structural similarity. And the goal of the proposed SSL is to pay more attention to the positions, whose associated predictions lead to a low degree of linear correlation between two corresponding regions in the ground truth map and the predicted map. Thus the model can achieve a strong structural similarity between the two maps through minimizing the SSL over the whole map. The experimental results demonstrate that our method can achieve substantial and consistent improvements in performance on the PASCAL VOC 2012 and Cityscapes datasets. The code will be released soon.
We propose a new attention model for video question answering. The main idea of the attention models is to locate on the most informative parts of the visual data. The attention mechanisms are quite popular these days. However, most existing visual a ttention mechanisms regard the question as a whole. They ignore the word-level semantics where each word can have different attentions and some words need no attention. Neither do they consider the semantic structure of the sentences. Although the Extended Soft Attention (E-SA) model for video question answering leverages the word-level attention, it performs poorly on long question sentences. In this paper, we propose the heterogeneous tree-structured memory network (HTreeMN) for video question answering. Our proposed approach is based upon the syntax parse trees of the question sentences. The HTreeMN treats the words differently where the textit{visual} words are processed with an attention module and the textit{verbal} ones not. It also utilizes the semantic structure of the sentences by combining the neighbors based on the recursive structure of the parse trees. The understandings of the words and the videos are propagated and merged from leaves to the root. Furthermore, we build a hierarchical attention mechanism to distill the attended features. We evaluate our approach on two datasets. The experimental results show the superiority of our HTreeMN model over the other attention models especially on complex questions. Our code is available on github. Our code is available at https://github.com/ZJULearning/TreeAttention
106 - Boxi Wu , Shuai Zhao , Wenqing Chu 2019
Introducing explicit constraints on the structural predictions has been an effective way to improve the performance of semantic segmentation models. Existing methods are mainly based on insufficient hand-crafted rules that only partially capture the image structure, and some methods can also suffer from the efficiency issue. As a result, most of the state-of-the-art fully convolutional networks did not adopt these techniques. In this work, we propose a simple, fast yet effective method that exploits structural information through direct supervision with minor additional expense. To be specific, our method explicitly requires the network to predict semantic segmentation as well as dilated affinity, which is a sparse version of pair-wise pixel affinity. The capability of telling the relationships between pixels are directly built into the model and enhance the quality of segmentation in two stages. 1) Joint training with dilated affinity can provide robust feature representations and thus lead to finer segmentation results. 2) The extra output of affinity information can be further utilized to refine the original segmentation with a fast propagation process. Consistent improvements are observed on various benchmark datasets when applying our framework to the existing state-of-the-art model. Codes will be released soon.
A caricature is an artistic form of a persons picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .
71 - Wenqing Chu , Deng Cai 2016
Object detection is one of the most active areas in computer vision, which has made significant improvement in recent years. Current state-of-the-art object detection methods mostly adhere to the framework of regions with convolutional neural network (R-CNN) and only use local appearance features inside object bounding boxes. Since these approaches ignore the contextual information around the object proposals, the outcome of these detectors may generate a semantically incoherent interpretation of the input image. In this paper, we propose an ensemble object detection system which incorporates the local appearance, the contextual information in term of relationships among objects and the global scene based contextual feature generated by a convolutional neural network. The system is formulated as a fully connected conditional random field (CRF) defined on object proposals and the contextual constraints among object proposals are modeled as edges naturally. Furthermore, a fast mean field approximation method is utilized to inference in this CRF model efficiently. The experimental results demonstrate that our approach achieves a higher mean average precision (mAP) on PASCAL VOC 2007 datasets compared to the baseline algorithm Faster R-CNN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا