ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Feature Based Contextual Model for Object Detection

72   0   0.0 ( 0 )
 نشر من قبل Wenqing Chu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object detection is one of the most active areas in computer vision, which has made significant improvement in recent years. Current state-of-the-art object detection methods mostly adhere to the framework of regions with convolutional neural network (R-CNN) and only use local appearance features inside object bounding boxes. Since these approaches ignore the contextual information around the object proposals, the outcome of these detectors may generate a semantically incoherent interpretation of the input image. In this paper, we propose an ensemble object detection system which incorporates the local appearance, the contextual information in term of relationships among objects and the global scene based contextual feature generated by a convolutional neural network. The system is formulated as a fully connected conditional random field (CRF) defined on object proposals and the contextual constraints among object proposals are modeled as edges naturally. Furthermore, a fast mean field approximation method is utilized to inference in this CRF model efficiently. The experimental results demonstrate that our approach achieves a higher mean average precision (mAP) on PASCAL VOC 2007 datasets compared to the baseline algorithm Faster R-CNN.



قيم البحث

اقرأ أيضاً

Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction reco gnition. Despite showing progress, these approaches only rely on the appearances of humans and objects and overlook the available context information, crucial for capturing subtle interactions between them. We propose a contextual attention framework for human-object interaction detection. Our approach leverages context by learning contextually-aware appearance features for human and object instances. The proposed attention module then adaptively selects relevant instance-centric context information to highlight image regions likely to contain human-object interactions. Experiments are performed on three benchmarks: V-COCO, HICO-DET and HCVRD. Our approach outperforms the state-of-the-art on all datasets. On the V-COCO dataset, our method achieves a relative gain of 4.4% in terms of role mean average precision ($mAP_{role}$), compared to the existing best approach.
For reliable environment perception, the use of temporal information is essential in some situations. Especially for object detection, sometimes a situation can only be understood in the right perspective through temporal information. Since image-bas ed object detectors are currently based almost exclusively on CNN architectures, an extension of their feature extraction with temporal features seems promising. Within this work we investigate different architectural components for a CNN-based temporal information extraction. We present a Temporal Feature Network which is based on the insights gained from our architectural investigations. This network is trained from scratch without any ImageNet information based pre-training as these images are not available with temporal information. The object detector based on this network is evaluated against the non-temporal counterpart as baseline and achieves competitive results in an evaluation on the KITTI object detection dataset.
155 - Hai Wang , Wei-Shi Zheng , 2020
Human-object interaction(HOI) detection is an important task for understanding human activity. Graph structure is appropriate to denote the HOIs in the scene. Since there is an subordination between human and object---human play subjective role and o bject play objective role in HOI, the relations between homogeneous entities and heterogeneous entities in the scene should also not be equally the same. However, previous graph models regard human and object as the same kind of nodes and do not consider that the messages are not equally the same between different entities. In this work, we address such a problem for HOI task by proposing a heterogeneous graph network that models humans and objects as different kinds of nodes and incorporates intra-class messages between homogeneous nodes and inter-class messages between heterogeneous nodes. In addition, a graph attention mechanism based on the intra-class context and inter-class context is exploited to improve the learning. Extensive experiments on the benchmark datasets V-COCO and HICO-DET demonstrate that the intra-class and inter-class messages are very important in HOI detection and verify the effectiveness of our method.
318 - Han Qiu , Yuchen Ma , Zeming Li 2020
Dense object detectors rely on the sliding-window paradigm that predicts the object over a regular grid of image. Meanwhile, the feature maps on the point of the grid are adopted to generate the bounding box predictions. The point feature is convenie nt to use but may lack the explicit border information for accurate localization. In this paper, We propose a simple and efficient operator called Border-Align to extract border features from the extreme point of the border to enhance the point feature. Based on the BorderAlign, we design a novel detection architecture called BorderDet, which explicitly exploits the border information for stronger classification and more accurate localization. With ResNet-50 backbone, our method improves single-stage detector FCOS by 2.8 AP gains (38.6 v.s. 41.4). With the ResNeXt-101-DCN backbone, our BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art approaches. The code is available at (https://github.com/Megvii-BaseDetection/BorderDet).
Recent saliency models extensively explore to incorporate multi-scale contextual information from Convolutional Neural Networks (CNNs). Besides direct fusion strategies, many approaches introduce message-passing to enhance CNN features or predictions . However, the messages are mainly transmitted in two ways, by feature-to-feature passing, and by prediction-to-prediction passing. In this paper, we add message-passing between features and predictions and propose a deep unified CRF saliency model . We design a novel cascade CRFs architecture with CNN to jointly refine deep features and predictions at each scale and progressively compute a final refined saliency map. We formulate the CRF graphical model that involves message-passing of feature-feature, feature-prediction, and prediction-prediction, from the coarse scale to the finer scale, to update the features and the corresponding predictions. Also, we formulate the mean-field updates for joint end-to-end model training with CNN through back propagation. The proposed deep unified CRF saliency model is evaluated over six datasets and shows highly competitive performance among the state of the arts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا