ترغب بنشر مسار تعليمي؟ اضغط هنا

148 - Wen-ge Wang 2009
The standard formalism of quantum mechanics is extended to describe a total system including the reference system (RS), with respect to which the total system is described. The RS is assumed to be able to act as a measuring apparatus, with measuremen t records given by the values of some reference properties of the RS. In order to describe the total system, we define a frame of reference (FR) as a set of states that can be used to express all other states of the total system. The theory is based on four basic postulates, which have, loosely speaking, the following contents. (i) A reference property of a RS has a definite value and is sufficiently stable in the FR directly related to the reference property. (ii) States of the total system are associated with vectors in the Hilbert space. (iii) Schrodinger equation is the dynamical law in each valid FR. (iv) Under certain condition a property of a system can be regarded as a reference property; vector descriptions of the total system given in different FRs of the same RS may have a probabilistic relationship like in Borns rule.
305 - Wen-ge Wang , Jie Liu , 2008
We study the stability of a two-component Bose-Einstein condensate (BEC) in the parameter regime in which its classical counterpart has regular motion. The stability is characterized by the fidelity for both the same and different initial states. We study as initial states the Fock states with definite numbers of atoms in each component of the BEC. It is found that for some initial times the two Fock states with all the atoms in the same component of the BEC are stabler than Fock states with atoms distributed in the two components. An experimental scheme is discussed, in which the fidelity can be measured in a direct way.
Using recent results in the field of quantum chaos we derive explicit expressions for the time scale of decoherence induced by the system-environment entanglement. For a generic system-environment interaction and for a generic quantum chaotic system as environment, conditions are derived for energy eigenstates to be preferred states in the weak coupling regime. A simple model is introduced to numerically confirm our predictions. The results presented here may also help understanding the dynamics of quantum entanglement generation in chaotic quantum systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا