ترغب بنشر مسار تعليمي؟ اضغط هنا

Hate speech detection has become a hot topic in recent years due to the exponential growth of offensive language in social media. It has proven that, state-of-the-art hate speech classifiers are efficient only when tested on the data with the same fe ature distribution as training data. As a consequence, model architecture plays the second role to improve the current results. In such a diverse data distribution relying on low level features is the main cause of deficiency due to natural bias in data. Thats why we need to use high level features to avoid a biased judgement. In this paper, we statistically analyze the Perspective Scores and their impact on hate speech detection. We show that, different hate speech datasets are very similar when it comes to extract their Perspective Scores. Eventually, we prove that, over-sampling the Perspective Scores of a hate speech dataset can significantly improve the generalization performance when it comes to be tested on other hate speech datasets.
Knowledge Distillation (KD) refers to transferring knowledge from a large model to a smaller one, which is widely used to enhance model performance in machine learning. It tries to align embedding spaces generated from the teacher and the student mod el (i.e. to make images corresponding to the same semantics share the same embedding across different models). In this work, we focus on its application in face recognition. We observe that existing knowledge distillation models optimize the proxy tasks that force the student to mimic the teachers behavior, instead of directly optimizing the face recognition accuracy. Consequently, the obtained student models are not guaranteed to be optimal on the target task or able to benefit from advanced constraints, such as large margin constraints (e.g. margin-based softmax). We then propose a novel method named ProxylessKD that directly optimizes face recognition accuracy by inheriting the teachers classifier as the students classifier to guide the student to learn discriminative embeddings in the teachers embedding space. The proposed ProxylessKD is very easy to implement and sufficiently generic to be extended to other tasks beyond face recognition. We conduct extensive experiments on standard face recognition benchmarks, and the results demonstrate that ProxylessKD achieves superior performance over existing knowledge distillation methods.
Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake fa ces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.
Synthetic Minority Over-sampling Technique (SMOTE) is the most popular over-sampling method. However, its random nature makes the synthesized data and even imbalanced classification results unstable. It means that in case of running SMOTE n different times, n different synthesized in-stances are obtained with n different classification results. To address this problem, we adapt the SMOTE idea in deep learning architecture. In this method, a deep neural network regression model is used to train the inputs and outputs of traditional SMOTE. Inputs of the proposed deep regression model are two randomly chosen data points which are concatenated to form a double size vector. The outputs of this model are corresponding randomly interpolated data points between two randomly chosen vectors with original dimension. The experimental results show that, Deep SMOTE can outperform traditional SMOTE in terms of precision, F1 score and Area Under Curve (AUC) in majority of test cases.
Increasingly growing Cryptocurrency markets have become a hive for scammers to run pump and dump schemes which is considered as an anomalous activity in exchange markets. Anomaly detection in time series is challenging since existing methods are not sufficient to detect the anomalies in all contexts. In this paper, we propose a novel hybrid pump and dump detection method based on distance and density metrics. First, we propose a novel automatic thresh-old setting method for distance-based anomaly detection. Second, we propose a novel metric called density score for density-based anomaly detection. Finally, we exploit the combination of density and distance metrics successfully as a hybrid approach. Our experiments show that, the proposed hybrid approach is reliable to detect the majority of alleged P & D activities in top ranked exchange pairs by outperforming both density-based and distance-based methods.
Blockchain in supply chain management is expected to boom over the next five years. It is estimated that the global blockchain supply chain market would grow at a compound annual growth rate of 87% and increase from $45 million in 2018 to $3,314.6 mi llion by 2023. Blockchain will improve business for all global supply chain stakeholders by providing enhanced traceability, facilitating digitisation, and securing chain-of-custody. This paper provides a synthesis of the existing challenges in global supply chain and trade operations, as well as the relevant capabilities and potential of blockchain. We further present leading pilot initiatives on applying blockchains to supply chains and the logistics industry to fulfill a range of needs. Finally, we discuss the implications of blockchain on customs and governmental agencies, summarize challenges in enabling the wide scale deployment of blockchain in global supply chain management, and identify future research directions.
Breast cancer is the most frequently reported cancer type among the women around the globe and beyond that it has the second highest female fatality rate among all cancer types. Despite all the progresses made in prevention and early intervention, ea rly prognosis and survival prediction rates are still unsatisfactory. In this paper, we propose a novel type of perceptron called L-Perceptron which outperforms all the previous supervised learning methods by reaching 97.42 % and 98.73 % in terms of accuracy and sensitivity, respectively in Wisconsin Breast Cancer dataset. Experimental results on Habermans Breast Cancer Survival dataset, show the superiority of proposed method by reaching 75.18 % and 83.86 % in terms of accuracy and F1 score, respectively. The results are the best reported ones obtained in 10-fold cross validation in absence of any preprocessing or feature selection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا