ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge graph entity typing aims to infer entities missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities contextual information. Specifically, we des ign two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
198 - Yue Chen , Wei Wei , Cheng Wang 2021
Large solar power stations usually locate in remote areas and connect to the main grid via a long transmission line. Energy storage unit is deployed locally with the solar plant to smooth its output. Capacities of the grid-connection transmission lin e and the energy storage unit have a significant impact on the utilization rate of solar energy, as well as the investment cost. This paper characterizes the feasible set of capacity parameters under a given solar spillage rate and a fixed investment budget. A linear programming based projection algorithm is proposed to obtain such a feasible set, offering valuable references for system planning and policy making.
221 - Yangyi Chen , Jin Su , Wei Wei 2021
Recently, the textual adversarial attack models become increasingly popular due to their successful in estimating the robustness of NLP models. However, existing works have obvious deficiencies. (1) They usually consider only a single granularity of modification strategies (e.g. word-level or sentence-level), which is insufficient to explore the holistic textual space for generation; (2) They need to query victim models hundreds of times to make a successful attack, which is highly inefficient in practice. To address such problems, in this paper we propose MAYA, a Multi-grAnularitY Attack model to effectively generate high-quality adversarial samples with fewer queries to victim models. Furthermore, we propose a reinforcement-learning based method to train a multi-granularity attack agent through behavior cloning with the expert knowledge from our MAYA algorithm to further reduce the query times. Additionally, we also adapt the agent to attack black-box models that only output labels without confidence scores. We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets. Experimental results show that our models achieve overall better attacking performance and produce more fluent and grammatical adversarial samples compared to baseline models. Besides, our adversarial attack agent significantly reduces the query times in both attack settings. Our codes are released at https://github.com/Yangyi-Chen/MAYA.
142 - Yue Chen , Wei Wei , Mingxuan Li 2021
Flexible load at the demand-side has been regarded as an effective measure to cope with volatile distributed renewable generations. To unlock the demand-side flexibility, this paper proposes a peer-to-peer energy sharing mechanism that facilitates en ergy exchange among users while preserving privacy. We prove the existence and partial uniqueness of the energy sharing market equilibrium and provide a centralized optimization to obtain the equilibrium. The centralized optimization is further linearized by a convex combination approach, turning into a multi-parametric linear program (MP-LP) with renewable output deviations being the parameters. The flexibility requirement of individual users is calculated based on this MP-LP. To be specific, an adaptive vertex generation algorithm is established to construct a piecewise linear estimator of the optimal total cost subject to a given error tolerance. Critical regions and optimal strategies are retrieved from the obtained approximate cost function to evaluate the flexibility requirement. The proposed algorithm does not rely on the exact characterization of optimal basis invariant sets and thus is not influenced by model degeneracy, a common difficulty faced by existing approaches. Case studies validate the theoretical results and show that the proposed method is scalable.
125 - Zezhi Shao , Yongjun Xu , Wei Wei 2021
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding methods either insufficiently model the local structure under specific semantic, or neglect the heterogeneity when aggregating information from it. On the other hand, representations from multiple semantics are not comprehensively integrated to obtain versatile node embeddings. To address the problem, we propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (named MV-HetGNN) for heterogeneous graph embedding by introducing the idea of multi-view representation learning. The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations. Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.
126 - Yulin Ye , Yaniqng Wang , Wei Wei 2021
It is well-known that a Leray-Hopf weak solution in $L^4 (0,T; L^4(Omega))$ for the incompressible Navier-Stokes system is persistence of energy due to Lions [19]. In this paper, it is shown that Lionss condition for energy balance is also valid for the weak solutions of the isentropic compressible Navier-Stokes equations allowing vacuum under suitable integrability conditions on the density and its derivative. This allows us to establish various sufficient conditions implying energy equality for the compressible flow as well as the non-homogenous incompressible Navier-Stokes equations. This is an improvement of corresponding results obtained by Yu in [32, Arch. Ration. Mech. Anal., 225 (2017)], and our criterion via the gradient of the velocity partially answers a question posed by Liang in [18, Proc. Roy. Soc. Edinburgh Sect. A (2020)].
105 - Zan Gao , Hongwei Wei , Weili Guan 2021
Person reidentification (ReID) is a very hot research topic in machine learning and computer vision, and many person ReID approaches have been proposed; however, most of these methods assume that the same person has the same clothes within a short ti me interval, and thus their visual appearance must be similar. However, in an actual surveillance environment, a given person has a great probability of changing clothes after a long time span, and they also often take different personal belongings with them. When the existing person ReID methods are applied in this type of case, almost all of them fail. To date, only a few works have focused on the cloth-changing person ReID task, but since it is very difficult to extract generalized and robust features for representing people with different clothes, their performances need to be improved. Moreover, visual-semantic information is often ignored. To solve these issues, in this work, a novel multigranular visual-semantic embedding algorithm (MVSE) is proposed for cloth-changing person ReID, where visual semantic information and human attributes are embedded into the network, and the generalized features of human appearance can be well learned to effectively solve the problem of clothing changes. Specifically, to fully represent a person with clothing changes, a multigranular feature representation scheme (MGR) is employed to focus on the unchanged part of the human, and then a cloth desensitization network (CDN) is designed to improve the feature robustness of the approach for the person with different clothing, where different high-level human attributes are fully utilized. Moreover, to further solve the issue of pose changes and occlusion under different camera perspectives, a partially semantically aligned network (PSA) is proposed to obtain the visual-semantic information that is used to align the human attributes.
193 - Yue Chen , Wei Wei , Tongxin Li 2021
Energy storage is expected to play an increasingly important role in mitigating variations that come along with the growing penetration of renewable energy. In this paper, we study the optimal bidding of an energy storage unit in a semi-centralized m arket. The energy storage unit offers its available storage capacity and maximum charging/ discharging rate to the operator; then the operator clears the real-time market by minimizing the total cost. The energy storage unit is paid/ charged at locational marginal price (LMP). The problem casts down to a bilevel optimization problem with a mixed-integer lower-level. An improved surrogate-based method with the combined spatial-temporal entropy term is developed to solve this problem. Numerical examples demonstrate the scalability, efficiency, and accuracy of the proposed method.
68 - Lingwei Wei , Dou Hu , Wei Zhou 2021
Detecting rumors on social media is a very critical task with significant implications to the economy, public health, etc. Previous works generally capture effective features from texts and the propagation structure. However, the uncertainty caused b y unreliable relations in the propagation structure is common and inevitable due to wily rumor producers and the limited collection of spread data. Most approaches neglect it and may seriously limit the learning of features. Towards this issue, this paper makes the first attempt to explore propagation uncertainty for rumor detection. Specifically, we propose a novel Edge-enhanced Bayesian Graph Convolutional Network (EBGCN) to capture robust structural features. The model adaptively rethinks the reliability of latent relations by adopting a Bayesian approach. Besides, we design a new edge-wise consistency training framework to optimize the model by enforcing consistency on relations. Experiments on three public benchmark datasets demonstrate that the proposed model achieves better performance than baseline methods on both rumor detection and early rumor detection tasks.
171 - Xue Liu , Dan Sun , Wei Wei 2021
The Graph Convolutional Networks (GCNs) proposed by Kipf and Welling are effective models for semi-supervised learning, but facing the obstacle of over-smoothing, which will weaken the representation ability of GCNs. Recently some works are proposed to tackle with above limitation by randomly perturbing graph topology or feature matrix to generate data augmentations as input for training. However, these operations have to pay the price of information structure integrity breaking, and inevitably sacrifice information stochastically from original graph. In this paper, we introduce a novel graph entropy definition as an quantitative index to evaluate feature information diffusion among a graph. Under considerations of preserving graph entropy, we propose an effective strategy to generate perturbed training data using a stochastic mechanism but guaranteeing graph topology integrity and with only a small amount of graph entropy decaying. Extensive experiments have been conducted on real-world datasets and the results verify the effectiveness of our proposed method in improving semi-supervised node classification accuracy compared with a surge of baselines. Beyond that, our proposed approach significantly enhances the robustness and generalization ability of GCNs during the training process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا