ترغب بنشر مسار تعليمي؟ اضغط هنا

The doping and strain effects on the electron transport of monolayer MoS_2 are systematically investigated using the first-principles calculations with Boltzmann transport theory. We estimate the mobility has a maximum 275 cm^2/(Vs) in the low doping level under the strain-free condition. The applying a small strain (3%) can improve the maximum mobility to 1150 cm^2/(Vs) and the strain effect is more significant in the high doping level. We demonstrate that the electric resistance mainly due to the electron transition between K and Q valleys scattered by the M momentum phonons. However, the strain can effectively suppress this type of electron-phonon coupling by changing the energy difference between the K and Q valleys. This sensitivity of mobility to the external strain may direct the improving electron transport of MoS_2.
We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin- valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا