ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the high-frequency behavior of the density of vibrational states in three-dimensional elasticity theory with spatially fluctuating elastic moduli. At frequencies well above the mobility edge, instanton solutions yield an exponentially decaying density of states. The instanton solutions describe excitations, which become localized due to the disorder-induced fluctuations, which lower the sound velocity in a finite region compared to its average value. The exponentially decaying density of states (known in electronic systems as the Lifshitz tail) is governed by the statistics of a fluctuating-elasticity landscape, capable of trapping the vibrational excitations.
We consider the localization properties of a lattice of coupled masses and springs with random mass and spring constant values. We establish the full phase diagrams of the system for pure mass and pure spring disorder. The phase diagrams exhibit regi ons of stable as well as unstable wave modes. The latter are of interest for the instantaneous-normal-mode spectra of liquids and the nascent field of acoustic metamaterials. We show the existence of delocalization-localization transitions throughout the phase diagram and establish, by high-precision numerical studies, that the universality of these transitions is of the Anderson type.
By calculating all terms of the high-density expansion of the euclidean random matrix theory (up to second-order in the inverse density) for the vibrational spectrum of a topologically disordered system we show that the low-frequency behavior of the self energy is given by $Sigma(k,z)propto k^2z^{d/2}$ and not $Sigma(k,z)propto k^2z^{(d-2)/2}$, as claimed previously. This implies the presence of Rayleigh scattering and long-time tails of the velocity autocorrelation function of the analogous diffusion problem of the form $Z(t)propto t^{(d+2)/2}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا