ﻻ يوجد ملخص باللغة العربية
We investigate the high-frequency behavior of the density of vibrational states in three-dimensional elasticity theory with spatially fluctuating elastic moduli. At frequencies well above the mobility edge, instanton solutions yield an exponentially decaying density of states. The instanton solutions describe excitations, which become localized due to the disorder-induced fluctuations, which lower the sound velocity in a finite region compared to its average value. The exponentially decaying density of states (known in electronic systems as the Lifshitz tail) is governed by the statistics of a fluctuating-elasticity landscape, capable of trapping the vibrational excitations.
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran
The effects of the physical aging on the vibrational density of states (VDOS) of a polymeric glass is studied. The VDOS of a poly(methyl methacrylate) glass at low-energy (<15 meV), was determined from inelastic neutron scattering at low-temperature
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency
We study the dynamics of one and two dimensional disordered lattice bosons/fermions initialized to a Fock state with a pattern of $1$ and $0$ particles on $A$ and ${bar A}$ sites. For non-interacting systems we establish a universal relation between
Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonaliza