ترغب بنشر مسار تعليمي؟ اضغط هنا

The quantum theory of a massless spin two particle is strongly constrained by diffeomorphism invariance, which is in turn implied by unitarity. We explicitly exhibit the space-time diffeomorphism algebra of string theory, realizing it in terms of wor ld sheet vertex operators. Viewing diffeomorphisms as field redefinitions in the two-dimensional conformal field theory renders the calculation of their algebra straightforward. Next, we generalize the analysis to combinations of space-time anti-symmetric tensor gauge transformations and diffeomorphisms. We also point out a left-right split of the algebra combined with a twist that reproduces the C-bracket of double field theory. We further compare our derivation to an analysis in terms of marginal deformations as well as vertex operator algebras.
We associate vertex operators to space-time diffeomorphisms in flat space string theory, and compute their algebra, which is a diffeomorphism algebra with higher derivative corrections. As an application, we realize the asymptotic symmetry group BMS3 of three-dimensional flat space in terms of vertex operators on the string worldsheet. This provides an embedding of the BMS3 algebra in a consistent theory of quantum gravity. Higher derivative corrections vanish asymptotically. An appendix is dedicated to alpha prime corrected algebras in conformal field theory and string theory.
We compare calculations of the three-point correlation functions of BMN operators at the one-loop (next-to-leading) order in the scalar SU(2) sector from the integrability expression recently suggested by Gromov and Vieira, and from the string field theory expression based on the effective interaction vertex by Dobashi and Yoneya. A disagreement is found between the form-factors of the correlation functions in the one-loop contributions. The order-of-limits problem is suggested as a possible explanation of this discrepancy.
Similarly as in AdS/CFT, the requirement that the action for spinors be stationary for solutions to the Dirac equation with fixed boundary conditions determines the form of the boundary term that needs to be added to the standard Dirac action in Kerr /CFT. We determine this boundary term and make use of it to calculate the two-point function for spinor fields in Kerr/CFT. This two-point function agrees with the correlator of a two dimensional relativistic conformal field theory.
Perturbative heterotic string theory develops a single complex tachyonic mode beyond the Hagedorn temperature. We calculate the quartic effective potential for this tachyonic mode at the critical temperature. Equivalently, we determine the quartic ef fective potential for strong supersymmetric breaking via anti-perdiodic boundary conditions for fermions on a small circle. We give many details of the heterotic tachyon scattering amplitudes, including a unitarity check to fix all normalization constants. We discuss difficulties in obtaining an effective action valid at all radii. We argue that in certain variables, the quartic term in the potential is radius independent. Speculations on the properties of a new strongly curved phase that could occur after tachyon condensation are offered.
Extremal scalar three-point correlators in the near-NHEK geometry of Kerr black holes have recently been shown to agree with the result expected from a holographically dual non-chiral two-dimensional conformal field theory. In this paper we extend th is calculation to extremal three-point functions of scalars in a general Kerr black hole which need not obey the extremality condition $M=sqrt{J}$. It was recently argued that for low frequency scalars in the Kerr geometry there is a dual conformal field theory description which determines the interactions in this regime. Our results support this conjecture. Furthermore, we formulate a recipe for calculating finite-temperature retarded three-point correlation functions which is applicable to a large class of (even non-extremal) correlators, and discuss the vanishing of the extremal couplings.
We compute three-point correlation functions in the near-extremal, near-horizon region of a Kerr black hole, and compare to the corresponding finite-temperature conformal field theory correlators. For simplicity, we focus on scalar fields dual to ope rators ${cal O}_h$ whose conformal dimensions obey $h_3=h_1+h_2$, which we name emph{extremal} in analogy with the classic $AdS_5 times S^5$ three-point function in the literature. For such extremal correlators we find perfect agreement with the conformal field theory side, provided that the coupling of the cubic interaction contains a vanishing prefactor $propto h_3-h_1-h_2$. In fact, the bulk three-point function integral for such extremal correlators diverges as $1/(h_3-h_1-h_2)$. This behavior is analogous to what was found in the context of extremal AdS/CFT three-point correlators. As in AdS/CFT our correlation function can nevertheless be computed via analytic continuation from the non-extremal case.
In this short note we begin the analysis of deformed integrable Chern-Simons theories. We construct the two loop dilatation operator for the scalar sector of the ABJM theory with $k1 eq -k2$ and we compute the anomalous dimension of some operators.
We provide the backreaction of the T-fold doubly T-dual to a background with NSNS three-form flux on a three-torus. We extend the backreacted T-fold to include cases with a flux localized in one out of three directions. We analyze the resulting monod romy domain walls and vortices. In these backgrounds, we give an analysis of the action of T-duality on observables like charges and Wilson surfaces. We analyze arguments for the existence of regions in the configuration space of second quantized string theory that cannot be reduced to geometry. Finally, by allowing for space-dependent moduli, we find a supergravity solution which is a T-fold with hyperbolic monodromies.
We consider examples of D=4 string theory vacua which, although globally non-geometric, admit a local description in terms of D=10 supergravity backgrounds. We analyze such backgrounds and find that the supersymmetry spinors vary non-trivially along the internal manifold, reproducing the interpolating supergravity solutions found by Frey and Grana. Finally, we propose a simple, local expression for non-geometric fluxes in terms of the internal spinors of the compactification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا