ترغب بنشر مسار تعليمي؟ اضغط هنا

To an electron moving in free space an electric field appears as a magnetic field which interacts with and can reorient the electron spin. In semiconductor quantum wells this spin-orbit interaction seems to offer the possibility of gate-voltage contr ol in spintronic devices but, as the electrons are subject to both ion-core and macroscopic structural potentials, this over-simple picture has lead to intense debate. For example, an externally applied field acting on the envelope of the electron wavefunction determined by the macroscopic potential, underestimates the experimentally observed spin-orbit field by many orders of magnitude while the Ehrenfest theorem suggests that it should actually be zero. Here we challenge, both experimentally and theoretically, the widely held belief that any inversion asymmetry of the macroscopic potential, not only electric field, will produce a significant spin-orbit field for electrons. This conclusion has far-reaching consequences for the design of spintronic devices while illuminating important fundamental physics.
Optical pump-probe measurements of spin-dynamics at temperatures down to 1.5K are described for a series of (001)-oriented GaAs/AlGaAs quantum well samples containing high mobility two-dimensional electron gases (2DEGs). For well widths ranging from 5 nm to 20 nm and 2DEG sheet densities from 1.75x1011cm-2 to 3.5x1011cm-2 the evolution of a small injected spin population is found to be a damped oscillation rather than exponential relaxation, consistent with the quasi-collision-free regime of Dyakonov-Perel spin dynamics. A Monte Carlo simulation method is used to extract the spin-orbit-induced electron spin precession frequency |W(kF)| and electron momentum scattering time tp* at the Fermi wavevector. The spin decay time passes through a minimum at a temperature corresponding to the transition from collision-free to collision-dominated regimes and tp* is found to be close to the ensemble momentum scattering time tp obtained from Hall measurements of electron mobility. The values of |W(kF)| give the Dresselhaus (BIA) coefficient of spin-orbit interaction as a function of electron confinement energy in the quantum show, qualitatively, the behaviour expected from k.p theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا