ترغب بنشر مسار تعليمي؟ اضغط هنا

VLTI/AMBER and VLTI/PIONIER observations of the LBV HR Car show an interferometric signature that could not possibly be explained by an extended wind, more or less symmetrically distributed around a single object. Instead, observations both in the Br $gamma$ line and the H-band continuum are best explained by two point sources (or alternatively one point source and one slightly extended source) at about 2 mas separation and a contrast ratio of about 1:5. These observations establish that HR Car is a binary, but further interpretation will only be possible with future observations to constrain the orbit. Under the assumption that the current separation is close to the maximum one, the orbital period can be estimated to be of the order of 5 years, similar as in the $eta$ Car system. This would make HR Car the second such LBV binary.
OHANA is an interferometric snapshot survey of the gaseous circumstellar environments of hot stars, carried out by the VLTI group at the Paranal observatory. It aims to characterize the mass-loss dynamics (winds/disks) at unexplored spatial scales fo r many stars. The survey employs the unique combination of AMBERs high spectral resolution with the unmatched spatial resolution provided by the VLTI. Because of the spatially unresolved central OBA-type star, with roughly neutral colour terms, their gaseous environments are among the easiest objects to be observed with AMBER, yet the extent and kinematics of the line emission regions are of high astrophysical interest.
We report the discovery of mid-infrared excess emission in the young object RZ Psc. The excess constitutes ~8% of its Lbol, and is well fit by a single 500K black-body implying a dust free region within 0.7AU for optically thick dust. The object disp lays dust obscuration events (UXOR behaviour) with a time-scale that suggests dusty material on orbits of 0.5AU. We also report a 12.4 year cyclical photometric variability which can be interpreted as due to perturbations in the dust distribution. The system is characterized by a high inclination, marginal extinction (during bright photometric states), a single temperature for the warm dust, and an age estimate which puts the star beyond the formation stage. We propose that the dust occultation events present a dynamical view of an active asteroid belt whose collisional products sporadically obscure the central star.
The circumstellar structure on 100 AU scales of the massive young stellar object W33A is probed using the VLTI and the MIDI instrument. N-band visibilities on 4 baselines are presented which are inconsistent with a spherically symmetric geometry. The visibility spectra and SED are simultaneously compared to 2D axi-symmetric dust radiative transfer models with a geometry including a rotationally flattened envelope and outflow cavities. We assume an O7.5 ZAMS star as the central source, consistent with the observed bolometric luminosity. The observations are also compared to models with and without (dusty and gaseous) accretion disks. A satisfactory model is constructed which reproduces the visibility spectra for each (u,v) point. It fits the silicate absorption, the mid-IR slope, the far-infrared peak, and the (sub)mm of the SED. It produces a 350 micron morphology consistent with observations. The 10 micron emission on 100 AU scales is dominated by the irradiated walls of the cavity sculpted by the outflow. The visibilities rule out the presence of dust disks with total (gas and dust) masses more than 0.01 Msun. However, optically thick accretion disks, interior to the dust sublimation radius, are allowed to accrete at rates equalling the envelopes mass infall rate (up to 10^(-3) Msun/yr) without substantially affecting the visibilities due to the extinction by the extremely massive envelope of W33A.
The space-time correlations of streams of photons can provide fundamentally new channels of information about the Universe. Todays astronomical observations essentially measure certain amplitude coherence functions produced by a source. The spatial c orrelations of wave fields has traditionally been exploited in Michelson-style amplitude interferometry. However the technology of the past was largely incapable of fine timing resolution and recording multiple beams. When time and space correlations are combined it is possible to achieve spectacular measurements that are impossible by any other means. Stellar intensity interferometry is ripe for development and is one of the few unexploited mechanisms to obtain potentially revolutionary new information in astronomy. As we discuss below, the modern use of stellar intensity interferometry can yield unprecedented measures of stellar diameters, binary stars, distance measures including Cepheids, rapidly rotating stars, pulsating stars, and short-time scale fluctuations that have never been measured before.
Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes. Our aim is to establish their density structure on scales of ~1000 AU, i.e. a factor 10 increase in angular resolution compared to similar studies performed in the (sub)m m. We have obtained diffraction-limited (0.6) 24.5 micron images of 14 well-known massive star formation regions with Subaru/COMICS. The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales. For many sources, radiative transfer models are capable of satisfactorily reproducing the observations. They are described by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p = 1.0 and there is evidence that these MYSOs are viewed near edge-on or near face-on, respectively. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We thus find a flattening of the MYSO envelope density law going from ~10 000 AU down to scales of ~1000 AU. We propose that this may be evidence of rotational support of the envelope (abridged).
We present diffraction limited (0.6) 24.5micron Subaru/COMICS images of the red supergiant mu Cep. We report the detection of a circumstellar nebula, that was not detected at shorter wavelengths. It extends to a radius of at least 6 in the thermal in frared. On these angular scales, the nebula is roughly spherical, in contrast, it displays a pronounced asymmetric morphology closer in. We simultaneously model the azimuthally averaged intensity profile of the nebula and the observed spectral energy distribution using spherical dust radiative transfer models. The models indicate a constant mass-loss process over the past 1000 years, for mass-loss rates a few times 10^(-7) Msun/yr. This work supports the idea that at least part of the asymmetries in shells of evolved massive stars and supernovae may be due to the mass-loss process in the red supergiant phase.
65 - W.J. de Wit 2008
We present interferometric and single-dish mid-infrared observations of a sample of massive young stellar objects (BN-type objects), using VLTI-MIDI (10 micron) and Subaru-COMICS (24.5 micron). We discuss the regions S140, Mon R2, M8E-IR, and W33A. T he observations probe the inner regions of the dusty envelope at scales of 50 milli arcsecond and 0.6 arcsec (100-1000 AU), respectively. Simultaneous model fits to spectral energy distributions and spatial data are achieved using self-consistent spherical envelope modelling. We conclude that those MYSO envelopes that are best described by a spherical geometry, the commensurate density distribution is a powerlaw with index -1.0. Such a powerlaw is predicted if the envelope is supported by turbulence on the 100-1000AU scales probed with MIDI and COMICS, but the role of rotation at these spatial scales need testing.
74 - W.J. de Wit 2007
The paper investigates the milli-arcsecond scale structure of the present-day mass-loss of the post-Red Supergiant IRC+10420. We use three telescopes of the VLT Interferometer in combination with the AMBER near-infrared beam combiner to measure spect rally dispersed correlated fluxes in the K-band around the Br gamma transition. The resulting visibilities are compared to the predicted visibilities of emission structures with various simple models in order to infer the size of the observed emission region. The Br gamma line is resolved by VLTI+AMBER on all three baselines, with the maximum projected baseline extending 69 meter and a P.A. ranging between 10 and 30 degrees. A differential phase between line and continuum is detected on the longest baseline. The Br gamma emission region is found to have a diameter of 3.3 milli-arcseconds (FWHM), when compared to a Gaussian intensity distribution. A uniform disk and a ring-like intensity distribution do not fit the line visibilities. Comparing the AMBER equivalent width of Br gamma with measurements from various epochs, we find that the stellar photosphere contributes about 60% of the total continuum light at 2.2 micron. The remaining 40% continuum emission is found on scales larger than the 66mas AMBER field of view. Using simple arguments, and assuming optically thick line emission, we find that the line emitting region is elongated. We briefly discuss the possibilities whether such a structure is due to a bi-polar flow or a circumstellar disk. (Abridged).
The present generation of ground-based Very High Energy (VHE) gamma-ray observatories consist of arrays of up to four large (> 12m diameter) light collectors quite similar to those used by R. Hanbury Brown to measure stellar diameters by Intensity In terferometry in the late 60s. VHE gamma-ray observatories to be constructed over the coming decade will involve several tens of telescopes of similar or greater sizes. Used as intensity interferometers, they will provide hundreds of independent baselines. Now is the right time to re-assess the potential of intensity interferometry so that it can be taken into consideration in the design of these large facilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا