ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the ionized wind of the post-Red Supergiant IRC +10 420 with VLTI/AMBER

129   0   0.0 ( 0 )
 نشر من قبل W. J. de Wit
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W.J. de Wit




اسأل ChatGPT حول البحث

The paper investigates the milli-arcsecond scale structure of the present-day mass-loss of the post-Red Supergiant IRC+10420. We use three telescopes of the VLT Interferometer in combination with the AMBER near-infrared beam combiner to measure spectrally dispersed correlated fluxes in the K-band around the Br gamma transition. The resulting visibilities are compared to the predicted visibilities of emission structures with various simple models in order to infer the size of the observed emission region. The Br gamma line is resolved by VLTI+AMBER on all three baselines, with the maximum projected baseline extending 69 meter and a P.A. ranging between 10 and 30 degrees. A differential phase between line and continuum is detected on the longest baseline. The Br gamma emission region is found to have a diameter of 3.3 milli-arcseconds (FWHM), when compared to a Gaussian intensity distribution. A uniform disk and a ring-like intensity distribution do not fit the line visibilities. Comparing the AMBER equivalent width of Br gamma with measurements from various epochs, we find that the stellar photosphere contributes about 60% of the total continuum light at 2.2 micron. The remaining 40% continuum emission is found on scales larger than the 66mas AMBER field of view. Using simple arguments, and assuming optically thick line emission, we find that the line emitting region is elongated. We briefly discuss the possibilities whether such a structure is due to a bi-polar flow or a circumstellar disk. (Abridged).



قيم البحث

اقرأ أيضاً

We obtained near-infrared long-baseline interferometry of IRC+10420 with the AMBER instrument of ESOs Very Large Telescope Interferometer (VLTI) in low and high spectral resolution (HR) mode to probe the photosphere and the innermost circumstellar en vironment of this rapidly evolving yellow hypergiant. In the HR observations, the visibilities show a noticeable drop across the Brackett gamma (BrG) line on all three baselines, and we found differential phases up to -25 degrees in the redshifted part of the BrG line and a non-zero closure phase close to the line center. The calibrated visibilities were corrected for AMBERs limited field-of-view to appropriately account for the flux contribution of IRC+10420s extended dust shell. We derived FWHM Gaussian sizes of 1.05 +/- 0.07 and 0.98 +/- 0.10 mas for IRC+10420s continuum-emitting region in the H and K bands, respectively, and the BrG-emitting region can be fitted with a geometric ring model with a diameter of 4.18 +0.19/-0.09 mas, which is approximately 4 times the stellar size. The geometric model also provides some evidence that the BrG line-emitting region is elongated towards a position angle of 36 degrees, well aligned with the symmetry axis of the outer reflection nebula. The HR observations were further analyzed by means of radiative transfer modeling using CMFGEN and the 2-D Busche & Hillier codes. Our spherical CMFGEN model poorly reproduces the observed line shape, blueshift, and extension, definitively showing that the IRC+10420 outflow is asymmetric. Our 2-D radiative transfer modeling shows that the blueshifted BrG emission and the shape of the visibility across the emission line can be explained with an asymmetric bipolar outflow with a high density contrast from pole to equator (8-16), where the redshifted light is substantially diminished.
Context: Massive stars are extremely important for the evolution of the galaxies; there are large gaps in our understanding of their properties and formation, however, mainly because they evolve rapidly, are rare, and distant. It may well be that alm ost all massive stars are born as triples or higher multiples, but their large distances require very high angular resolution to directly detect the companions at milliarcsecond scales. Aims: Herschel36 is a young massive system located at 1.3 kpc. It has a combined smallest predicted mass of 45 M_sun. Multi-epoch spectroscopic data suggest the existence of at least three gravitationally bound components. Two of them, system Ab, are tightly bound in a spectroscopic binary, and the third one, component Aa, orbits in a wider orbit. Our aim was to image and obtain astrometric and photometric measurements of components Aa and Ab using, for the first time, long-baseline optical interferometry to further constrain its nature. Methods: We observed Herschel 36 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer, which provides an angular resolution of approx. 2 mas. We used the code BSMEM to perform the interferometric image reconstruction. We fitted the interferometric observables using proprietary IDL routines and the code LitPro. Results: We imaged the Aa+Ab components of Herschel 36 in H and K filters. Component Ab is located at a projected distance of 1.81 mas, at a position angle of approx. 222 deg. east of north, the flux ratio between components Aa and Ab is close to one. The small measured angular separation indicates that system Ab and Ab may be approaching the periastron of their orbits. These results, only achievable with long-baseline near-infrared interferometry, constitute the first step toward a thorough understanding of this massive triple system.
We present high spectral resolution aperture-synthesis imaging of the red supergiant Antares (alpha Sco) in individual CO first overtone lines with VLTI/AMBER. The reconstructed images reveal that the star appears differently in the blue wing, line c enter, and red wing and shows an asymmetrically extended component. The appearance of the star within the CO lines changes drastically within one year, implying a significant change in the velocity field in the atmosphere. Our modeling suggests an outer atmosphere (MOLsphere) extending to 1.2--1.4 stellar radii with CO column densities of (0.5--1)x10^{20} cm^{-2} and a temperature of ~2000 K. While the velocity field in 2009 is characterized by strong upwelling motions at 20--30 km/s, it changed to strong downdrafts in 2010. On the other hand, the AMBER data in the continuum show only a slight deviation from limb-darkened disks and only marginal time variations. We derive a limb-darkened disk diameter of 37.38+/-0.06 mas and a power-law-type limb-darkening parameter of (8.7+/-1.6)x10^{-2} (2009) and 37.31+/-0.09 mas and (1.5+/-0.2)x10^{-1} (2010). We also obtain Teff = 3660+/-120 K and log L/Lsun = 4.88+/-0.23, which suggests a mass of 15+/-5 Msun with an age of 11-15 Myr. This age is consistent with the recently estimated age for the Upper Scorpius OB association. The properties of the outer atmosphere of Antares are similar to those of another well-studied red supergiant, Betelgeuse. The density of the extended outer atmosphere of Antares and Betelgeuse is higher than predicted by the current 3-D convection simulations by at least six orders of magnitude, implying that convection alone cannot explain the formation of the extended outer atmosphere.
Context. Red supergiant stars possess surface features and extended molecular atmospheres. Photospheric convection may be a crucial factor of the levitation of the outer atmospheric layers. However, the mechanism responsible is still poorly understoo d. Aims. We image the stellar surface of V602 Carinae (V602 Car) to constrain the morphology and contrast of the surface features and of the extended atmospheric layers. Methods. We observed V602 Car with the Very Large Telescope Interferometer (VLTI) PIONIER instrument (1.53-1.78 $mathrm{mu}$m) between May and July 2016, and April and July 2019 with different telescope configurations. We compared the image reconstructions with 81 temporal snapshots of 3D radiative-hydrodynamics (RHD) CO$^5$BOLD simulations in terms of contrast and morphology, using the Structural Similarity Index. Results. The interferometric data are compatible with an overall spherical disk of angular diameter 4.4$pm$0.2 mas, and an extended molecular layer. In 2016, the reconstructed image reveals a bright arc-like feature toward the northern rim of the photospheric surface. In 2019, an arc-like feature is seen at a different orientation and a new peak of emission is detected on the opposite side. The contrasts of the reconstructed surface images are 11%$pm$2% and 9%$pm$2% for 2016 and 2019, respectively. The morphology and contrast of the two images are consistent with 3D RHD simulations, within our achieved spatial resolution and dynamic range. The extended molecular layer contributes 10--13% of the total flux with an angular diameter of 6--8 mas. It is present but not clearly visible in the reconstructed images because it is close to the limits of the achieved dynamic range. The presence of the molecular layer is not reproduced by the 3D RHD simulations. Conclusions...
The rapidly rotating primary component of Regulus A system has been observed, for the first time, using the technique of differential interferometry at high spectral resolution. The observations have been performed across the Br$_gamma$ spectral line with the VLTI/AMBER focal instrument in high spectral resolution mode (R $approx$ 12000) at $approx$ 80-130m (projected on the sky) Auxiliary Telescopes triplet baseline configurations. We confirm, within the uncertainties, the results previously obtained using the techniques of classical long-baseline interferometry, although the question of anomalous gravity darkening remains open for the future study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا