ترغب بنشر مسار تعليمي؟ اضغط هنا

A dynamical model is applied to the study of the pion valence light-front wave function, obtained from the actual solution of the Bethe-Salpeter equation in Minkowski space, resorting to the Nakanishi integral representation. The kernel is simplified to a ladder approximation containing constituent quarks, an effective massive gluon exchange, and the scale of the extended quark-gluon interaction vertex. These three input parameters carry the infrared scale {Lambda}QCD and are fine-tuned to reproduce the pion weak decay constant, within a range suggested by lattice calculations. Besides f{pi}, we present and discuss other interesting quantities on the null-plane, like: (i) the valence probability, (ii) the dynamical functions depending upon the longitudinal or the transverse components of the light-front (LF) momentum, represented by LF-momentum distributions and distribution amplitudes, and (iii) the probability densities both in the LF-momentum space and the 3D space given by the Cartesian product of the covariant Ioffe-time and transverse coordinates, in order to perform an analysis of the dynamical features in a complementary way. The proposed analysis of the Minkowskian dynamics inside the pion, though carried out at the initial stage, qualifies the Nakanishi integral representation as an appealing effective tool, with still unexplored potentialities to be exploited for addressing correlations between dynamics and observable properties.
We apply the Induced Matter Model to a five-dimensional metric. For the case with null cosmological constant, we obtain a solution able to describe the radiation-dominated era of the universe. The positive $Lambda$ case yields a bounce cosmological m odel. In the negative five-dimensional cosmological constant case, the scale factor is obtained as $a(t)simsqrt[]{sinh t}$, which is able to describe not only the late-time cosmic acceleration but also the non-accelerated stages of the cosmic expansion in a continuous form. This solution together with the extra-dimensional scale factor solution yields the material content of the model to be remarkably related through an equation of state analogous to the renowned MIT bag model equation of state for quark matter $p=(rho-4B)/3$. In our case, $rho=rho_m+B$, with $rho_m$ being the energy density of relativistic and non-relativistic matter and $B= Lambda /16pi$ represents the bag energy constant, which plays the role of the dark energy in the four-dimensional universe, with $Lambda$ being the cosmological constant of the AdS$_5$ space-time. Our model satisfactorily fits the observational data for the low redshift sample of the experimental measurement of the Hubble parameter, which resulted in $H_0=72.2^{+5.3}_{-5.5}$km s$^{-1}$ Mpc$^{-1}$.
The challenge to obtain from the Euclidean Bethe--Salpeter amplitude the amplitude in Minkowski is solved by resorting to un-Wick rotating the Euclidean homogeneous integral equation. The results obtained with this new practical method for the amputa ted Bethe--Salpeter amplitude for a two-boson bound state reveals a rich analytic structure of this amplitude, which can be traced back to the Minkowski space Bethe--Salpeter equation using the Nakanishi integral representation. The method can be extended to small rotation angles bringing the Euclidean solution closer to the Minkowski one and could allow in principle the extraction of the longitudinal parton density functions and momentum distribution amplitude, for example.
The Dyson-Schwinger quark equation is solved for the quark-gluon vertex using the most recent lattice data available in the Landau gauge for the quark, gluon and ghost propagators, the full set of longitudinal tensor structures in the Ball-Chiu verte x, taking into account a recently derived normalisation for a quark-ghost kernel form factors and the gluon contribution for the tree level quark-gluon vertex identified on a recent study of the lattice soft gluon limit. A solution for the inverse problem is computed after the Tikhonov linear regularisation of the integral equation, that implies solving a modified Dyson-Schwinger equation. We get longitudinal form factors that are strongly enhanced at the infrared region, deviate significantly from the tree level results for quark and gluon momentum below 2 GeV and at higher momentum approach their perturbative values. The computed quark-gluon vertex favours kinematical configurations where the quark momentum $p$ and the gluon momentum $q$ are small and parallel. Further, the quark-gluon vertex is dominated by the form factors associated to the tree level vertex $gamma_mu$ and to the operator $2 , p_mu + q_mu$. The higher rank tensor structures provide small contributions to the vertex.
The soft gluon limit of the longitudinal part of the quark-gluon vertex is studied by resorting to non-perturbative approaches to Quantum Chromodynamics (QCD). Based on a Slavnov-Taylor identity (STI), the longitudinal form factors is expressed in te rms of the quark-ghost kernel, the quark self energy and the quark wave function. An exact relation between the non-vanishing longitudinal form factors is derived for the soft gluon limit and explored to understand the behaviour of the vertex. Within a Ball-Chiu vertex, the form factor $lambda_1$ was analysed using recent lattice simulations for full QCD for the soft gluon limit. The lattice data shows that the gluon propagator resumes the momentum dependence of such component of the vertex. This connection is understood via a fully dressed one-loop Bethe-Salpeter equation. The behaviour of the remaining longitudinal form factors $lambda_2(p^2)$ and $lambda_3(p^2)$ is investigated combining both the information of lattice simulations and the derived relations based on the STI.
In this work, we report on the possibility of occurrence of oscillon configurations in the fourth state of matter. Oscillons are extremely long-lived, time-periodic, spatially-localised scalar field structures. Starting from a scalar field theory in 1+1 space-time dimensions, we find out that small-amplitude oscillons can be obtained in the framework of a $phi^6$ self-interacting potential. A connection between our results and ideal MHD theory is established. Perspectives for a development of the present work are pointed out.
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On th e other hand, it is known that in extended theories of gravity, the extra degrees of freedom once provided may allow the energy conditions to be obeyed and, consequently, the matter content of the wormhole to be non-exotic. In this work, we obtain, as a novelty in the literature, solutions for charged wormholes in the $f(R,T)$ extended theory of gravity. We show that the presence of charge in these objects may be a possibility to respect some stability conditions for their metric. Also, remarkably, the energy conditions are respected in the present approach.
39 - W. de Paula 2008
We obtain an explicit solution of the 5d Einstein equations in a dilaton background model. We demonstrate that for each metric ansatz that only depends on the extra coordinate, it is possible to uniquely determine the dilaton field and its potential consistently with the 5d Einstein equation. In this holographic dual model of QCD, conformal symmetry of the Anti-de-Sitter metric near the 4d boundary is broken by a term that leads to an area law for the Wilson loop. We verify that confinement of the string modes dual to mesons follows from the metric background and the corresponding dilaton solution of the gravity-dilaton coupled equations. In addition, we show that the meson Regge trajectories constrain the metric and corresponding dilaton background within the area law requirement. We can also incorporate asymptotic freedom in the gravity background within the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا