ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - Y. D. Liu , H. W. Wang , Y. G. Ma 2015
The elastic resonance scattering protons decayed from $^{11}$B to the ground state of $^{10}$Be were measured using the thick-target technique in inverse kinematics at the Heavy Ion Research Facility in Lanzhou (HIRFL). The obtained excitation functi ons were well described by a multichannel R-matrix procedure under the kinematics process assumption of resonant elastic scattering. The excitation energy of the resonant states ranges from 13.0 to 17.0 MeV, and their resonant parameters such as the resonant energy E$_{x}$, the spin-parity J$^pi$, and the proton-decay partial width $Gamma_p$ were determined from R-matrix fits to the data. Two of these states around E$_{x}$ = 14.55 MeV [J$^pi$ = (3/2$^+$, 5/2$^+$), $Gamma_p$ = 475 $pm$ 80 keV] and E$_{x}$ = 14.74 MeV [J$^pi$ = 3/2$^-$, $Gamma_p$ = 830 $pm$ 145 keV], and a probably populated state at E$_x$ = 16.18 MeV [J$^pi$ =(1/2$^-$, 3/2$^-$), $Gamma_p$ $<$ 60 keV], are respectively assigned to the well-known states in $^{11}$B at 14.34 MeV, 15.29 MeV, and 16.43 MeV. The isospin of these three states were previously determined to be T = 3/2, but discrepancies exist in widths and energies due to the current counting statistics and energy resolution. We have compared these states with previous measurements, and the observation of the possibly populated resonance is discussed.
61 - W. W. Wang , J. Teng , J. Chen 2014
Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.
78 - W. Wang , L.-Q. Yan , J.-Z. Cong 2013
Although the magnetoelectric effects - the mutual control of electric polarization by magnetic fields and magnetism by electric fields, have been intensively studied in a large number of inorganic compounds and heterostructures, they have been rarely observed in organic materials. Here we demonstrate magnetoelectric coupling in a metal-organic framework [(CH3)2NH2]Mn(HCOO)3 which exhibits an order-disorder type of ferroelectricity below 185 K. The magnetic susceptibility starts to deviate from the Curie-Weiss law at the paraelectric-ferroelectric transition temperature, suggesting an enhancement of short-range magnetic correlation in the ferroelectric state. Electron spin resonance study further confirms that the magnetic state indeed changes following the ferroelectric phase transition. Inversely, the ferroelectric polarization can be improved by applying high magnetic fields. We interpret the magnetoelectric coupling in the paramagnetic state in the metal-organic framework as a consequence of the magnetoelastic effect that modifies both the superexchange interaction and the hydrogen bonding.
We present the possibility of tuning the spin-wave band structure, particularly the bandgaps in a nanoscale magnonic antidot waveguide by varying the shape of the antidots. The effects of changing the shape of the antidots on the spin-wave dispersion relation in a waveguide have been carefully monitored. We interpret the observed variations by analysing the equilibrium magnetic configuration and the magnonic power and phase distribution profiles during spin-wave dynamics. The inhomogeneity in the exchange fields at the antidot boundaries within the waveguide is found to play a crucial role in controlling the band structure at the discussed length scales. The observations recorded here will be important for future developments of magnetic antidot based magnonic crystals and waveguides.
We calculate the density of states (DOS) and the Mulliken population of the diamond and the co-doped diamonds with different concentrations of lithium (Li) and phosphorus (P) by the method of the density functional theory, and analyze the bonding sit uations of the Li-P co-doped diamond thin films and the impacts of the Li-P co-doping on the diamond conductivities. The results show that the Li-P atoms can promote the split of the diamond energy band near the Fermi level, and improve the electron conductivities of the Li-P co-doped diamond thin films, or even make the Li-P co-doped diamond from semiconductor to conductor. The effect of Li-P co-doping concentration on the orbital charge distributions, bond lengths and bond populations is analyzed. The Li atom may promote the split of the energy band near the Fermi level as well as may favorably regulate the diamond lattice distortion and expansion caused by the P atom.
183 - P. Ma 2008
This paper proposes a joint transmitter-receiver design to minimize the weighted sum power under the post-processing signal-to-interference-and-noise ratio (post-SINR) constraints for all subchannels. Simulation results demonstrate that the algorithm can not only satisfy the post-SINR constraints but also easily adjust the power distribution among the users by changing the weights accordingly. Hence the algorithm can be used to alleviates the adjacent cell interference by reducing the transmitting power to the edge users without performance penalty.
A thorough critical literature survey has been carried out for reliable measurements of oxygen and neon abundances of planetary nebulae (PNe) and HII regions. By contrasting the results of PNe and of HII regions, we aim to address the issues of the e volution of oxygen and neon in the interstellar medium (ISM) and in the late evolutionary phases of low- and intermediate-mass stars (LIMS), as well as the currently hotly disputed solar Ne/O abundance ratio. Through the comparisons, we find that neon abundance and Ne/O ratio increase with increasing oxygen abundance in both types of nebulae, with positive correlation coefficients larger than 0.75. The correlations suggest different enrichment mechanisms for oxygen and neon in the ISM, in the sense that the growth of neon is delayed compared to oxygen. The differences of abundances between PNe and HII regions, are mainly attributed to the results of nucleosynthesis and dredge-up processes that occurred in the progenitor stars of PNe. We find that both these alpha-elements are significantly enriched at low metallicity (initial oxygen abundance <= 8.0) but not at metallicity higher than the SMC. The fact that Ne/O ratios measured in PNe are almost the same as those in HII regions, regardless of the metallicity, suggests a very similar production mechanism of neon and oxygen in intermediate mass stars (IMS) of low initial metallicities and in more massive stars, a conjecture that requires verification by further theoretical studies. This result also strongly suggests that both the solar neon abundance and the Ne/O ratio should be revised upwards by ~0.22 dex from the Asplund, Grevesse & Sauval values or by ~0.14 dex from the Grevesse & Sauval values.
(abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the I nternational Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Tes) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are largely caused by abnormally high values obtained from ORLs, up to tens of solar in extreme cases. It appears that whatever mechanisms are causing the ubiquitous dichotomy between CELs and ORLs, their main effects are to enhance the emission of ORLs, but hardly affect that of CELs. It seems that heavy element abundances deduced from ORLs may not reflect the bulk composition of the nebula. Rather, our analysis suggests that ORLs of heavy element ions mainly originate from a previously unseen component of plasma of Tes of just a few hundred Kelvin, which is too cool to excite any optical and UV CELs.
80 - W. Wang , M.J. Harris , R. Diehl 2007
Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. The spectrometer SPI on board INTEGRAL has accumulated nearly three years of data on gamma-ray emission from the Galactic plane. We have analyzed these data with suitable instrumental-background models and sky distributions to produce high-resolution spectra of Galactic emission. We detect the gamma-ray lines from 60Fe decay at 1173 and 1333 keV, obtaining an improvement over our earlier measurement of both lines with now 4.9 sigma significance for the combination of the two lines. The average flux per line is (4.4 pm 0.9) times 10^{-5} ph cm^{-2} s^{-1} rad^{-1} for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.148 pm 0.06. The current theoretical predictions are still consistent with our result.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا