ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene is a model system for the study of electrons confined to a strictly two-dimensional layer1 and a large number of electronic phenomena have been demonstrated in graphene, from the fractional2, 3 quantum Hall effect to superconductivity4. Howe ver, the coupling of conduction electrons to local magnetic moments5, 6, a central problem of condensed matter physics, has not been realized in graphene, and, given carbons lack of d or f electrons, magnetism in graphene would seem unlikely. Nonetheless, magnetism in graphitic carbon in the absence of transition-metal elements has been reported7-10, with explanations ranging from lattice defects11 to edge structures12, 13 to negative curvature regions of the graphene sheet14. Recent experiments suggest that correlated defects in highly-ordered pyrolytic graphite (HOPG) induced by proton irradiation9 or native to grain boundaries7, can give rise to ferromagnetism. Here we show that point defects (vacancies) in graphene15 are local moments which interact strongly with the conduction electrons through the Kondo effect6, 16-18 providing strong evidence that defects in graphene are indeed magnetic. The Kondo temperature TK is tunable with carrier density from 30-90 K; the high TK is a direct consequence of strong coupling of defects to conduction electrons in a Dirac material18. The results indicate that defect engineering in graphene could be used to generate and control carrier-mediated magnetism, and realize all-carbon spintronic devices. Furthermore, graphene should be an ideal system in which to probe Kondo physics in a widely tunable electron system.
Irradiation of graphene on SiO2 by 500 eV Ne and He ions creates defects that cause intervalley scattering as evident from a significant Raman D band intensity. The defect scattering gives a conductivity proportional to charge carrier density, with m obility decreasing as the inverse of the ion dose. The mobility decrease is four times larger than for a similar concentration of singly charged impurities. The minimum conductivity decreases proportional to the mobility to values lower than 4e^2/(pi*h), the minimum theoretical value for graphene free of intervalley scattering. Defected graphene shows a diverging resistivity at low temperature, indicating insulating behavior. The results are best explained by ion-induced formation of lattice defects that result in mid-gap states.
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The appar ent height of the first layer is 1.57 +/- 0.05 nm, indicating standing up pentacene grains in the thin-film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (001) plane (ab plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The films are unperturbed by the UTOs short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.
Spatial step edge fluctuations on a multi-component surface of Al/Si(111)-(root3 x root3) were measured via scanning tunneling microscopy over a temperature range of 720K-1070K, for step lengths of L = 65-160 nm. Even though the time scale of fluctua tions of steps on this surface varies by orders of magnitude over the indicated temperature ranges, measured first-passage spatial persistence and survival probabilities are temperature independent. The power law functional form for spatial persistence probabilities is confirmed and the symmetric spatial persistence exponent is measured to be theta = 0.498 +/- 0.062 in agreement with the theoretical prediction theta = 1/2. The survival probability is found to scale directly with y/L, where y is the distance along the step edge. The form of the survival probabilities agree quantitatively with the theoretical prediction, which yields exponential decay in the limit of small y/L. The decay constant is found experimentally to be ys/L= 0.076 +/- 0.033 for y/L <= 0.2.
Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material in a controlled manner to quantify the relative effects of the impurity content on grain boundary structure and thin film nucleation. Atomic force microscopy (AFM ) has been employed to directly characterize films grown using 0.0-7.5% PnQ by weight in the source material. Analysis of the distribution of capture zones areas of submonolayer islands as a function of impurity content shows that for large PnQ content the critical nucleus size for forming a Pn island is smaller than for low PnQ content. This result indicates a favorable energy for formation of Pn-PnQ complexes, which in turn suggests that the primary effect of PnQ on Pn mobility may arise from homogeneous distribution of PnQ defects.
The 1/f noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies as (gate voltage)-1, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooges parameter varies as an inverse power-law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا