ترغب بنشر مسار تعليمي؟ اضغط هنا

Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic and optical properties have been studied for decades, SrTiO$_3$ has recently become a renewed materials research focus catalyzed in part by the discovery of magnetism and superconductivity at interfaces between SrTiO$_3$ and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role in these effects. Moreover, recent signatures of magnetization in gated SrTiO$_3$ have further galvanized interest in the emergent properties of this nominally nonmagnetic material. Here we observe an optically induced and persistent magnetization in oxygen-deficient SrTiO$_{3-delta}$ using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18K, persists for hours below 10K, and is tunable via the polarization and wavelength of sub-bandgap (400-500nm) light. These effects occur only in oxygen-deficient samples, revealing the detailed interplay between magnetism, lattice defects, and light in an archetypal oxide material.
204 - W. D. Rice , J. Kono , S. Zybell 2012
We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the $1s$ exciton emission, which we attribute to the terahertz-induced $1s$-to-$2p$ excitation. Simultaneously, a pronounced enhancement of the $2s$-exciton emission is observed, despite the $1s$-to-$2s$ transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2$s$ and 2$p$ states, yielding an effective terahertz transition between the 1$s$ and 2$s$ populations.
We have observed a nearly fourfold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after t hermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie-law (spin susceptibility $propto 1/T$) is seen from $sim$4 K to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR linewidth decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the linewidth, we extracted an estimate of the intertube hopping frequency; for both sample conditions, we found this hopping frequency to be $sim$100 GHz. Since the spin hopping frequency changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no linewidth change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor ($p$-type), compensating the donor-like ($n$-type) defects that are responsible for the ESR signal in bulk SWCNTs.
We have used resonant Raman scattering spectroscopy to fully analyze the relative abundances of different (n,m) species in single-walled carbon nanotube samples that are metallically enriched by density gradient ultracentrifugation. Strikingly, the d ata clearly show that our density gradient ultracentrifugation process enriches the metallic fractions in armchair and near-armchair species. We observe that armchair carbon nanotubes constitute more than 50% of each (2n + m) family.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا