ترغب بنشر مسار تعليمي؟ اضغط هنا

A series of recent magnetooptical studies pointed to contradicting values of the s-d exchange energy N0{alpha} in Mn-doped GaAs and GaN as well as in Fe-doped GaN. Here, a strong sensitivity of weak-localization phenomena to symmetry breaking perturb ations (such as spin-splitting and spin-disorder scattering) is exploited to evaluate the magnitude of N0{alpha} for n-type wurtzite (Ga,Mn)N:Si films grown by metalorganic vapor phase epitaxy. Millikelvin magnetoresistance studies and their quantitative interpretation point to N0{alpha} < 40 meV, a value at least 5 times smaller than the one found with similar measurements on, e.g., $n$-(Zn,Mn)O. It is shown that this striking difference in the values of the s-d coupling between $n$-type III-V and II-VI dilute magnetic semiconductors can be explained by a theory that takes into account the acceptor character of Mn in III-V compounds.
Millikelvin magnetotransport studies are carried out on heavily $n$-doped wurtzite GaN:Si films grown on semi-insulating GaN:Mn buffer layers by metal-organic vapor phase epitaxy. The dependency of the conductivity on magnetic field and temperature i s interpreted in terms of theories that take into account disorder-induced quantum interference of one-electron and many-electron self-crossing trajectories. The Rashba parameter $alpha_{text{R}},=,(4.5 pm 1)$ meV$AA$ is determined, and it is shown that in the previous studies of electrons adjacent to GaN/(Al,Ga)N interfaces, bulk inversion asymmetry was dominant over structural inversion asymmetry. The comparison of experimental and theoretical values of $alpha_{text{R}}$ across a series of wurtzite semiconductors is presented as a test of current relativistic ab initio computation schemes. It is found that electron-electron scattering with small energy transfer accounts for low temperature decoherence in these systems.
We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا