ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental determination of Rashba spin-orbit coupling in wurtzite $n$-GaN:Si

108   0   0.0 ( 0 )
 نشر من قبل Wiktor Stefanowicz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Millikelvin magnetotransport studies are carried out on heavily $n$-doped wurtzite GaN:Si films grown on semi-insulating GaN:Mn buffer layers by metal-organic vapor phase epitaxy. The dependency of the conductivity on magnetic field and temperature is interpreted in terms of theories that take into account disorder-induced quantum interference of one-electron and many-electron self-crossing trajectories. The Rashba parameter $alpha_{text{R}},=,(4.5 pm 1)$ meV$AA$ is determined, and it is shown that in the previous studies of electrons adjacent to GaN/(Al,Ga)N interfaces, bulk inversion asymmetry was dominant over structural inversion asymmetry. The comparison of experimental and theoretical values of $alpha_{text{R}}$ across a series of wurtzite semiconductors is presented as a test of current relativistic ab initio computation schemes. It is found that electron-electron scattering with small energy transfer accounts for low temperature decoherence in these systems.

قيم البحث

اقرأ أيضاً

Although most theoretical calculations of quantum wells with non-square profiles assume that material composition is varied continuously, it is more common in experiment to grow digital alloys. We compare the Rashba spin-orbit interaction of triangul ar wells using continuous, discrete, and digital alloying profiles in (001)-grown triangular InSb/Al_f(z)In_(1-f(z))Sb, finding a very large difference between digital alloying and the others, including a sign change in the Rashba spin-orbit coupling. We find that the interface contribution to the Rashba spin-orbit coupling is much larger in the continuously- and discretely-alloyed triangular quantum wells than in the digitally-alloyed triangular wells, in which it is almost completely absent. The electric field contribution, however, is quite similar in all three systems. Due to a much stronger doping dependence in all three systems, the electric field contribution dominates at higher dopings, although the very large offset due to the near absence of interface contribution in digitally-alloyed wells persists.
207 - A. Manchon , H.C. Koo , J. Nitta 2015
In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain certain peculiarities in the electron spin resonance of two-dimensional semiconductors. Over the past thirty years, similar ideas have been leading to a vast numbe r of predictions, discoveries, and innovative concepts far beyond semiconductors. The past decade has been particularly creative with the realizations of means to manipulate spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and with the discovery of new topological classes of materials. These developments reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures ranging from layered graphene-like materials to cold atoms. This review presents the most remarkable recent and ongoing realizations of Rashba physics in condensed matter and beyond.
We use $vec{k}cdotvec{p}$ theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of th e electron charge density. We explore gate-controlled SOC for wires of different size and doping, and we show that in high carrier density SOC has a non-linear electric field susceptibility, due to large reshaping of the quantum states. We analyze recent experiments with InSb nanowires in light of our calculations. Good agreement is found with SOC coefficients reported in Phys. Rev.B 91, 201413(R) (2015), but not with the much larger values reported in Nat Commun., 8, 478 (2017). We discuss possible origins of this discrepancy.
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this corr espondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Greens function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation are observed within the single-band n to p transmission regime. The former comes from real-spin conservation, in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall mechanism of the Rashba coupling.
Tailoring spin-orbit interactions and Coulomb repulsion are the key features to observe exotic physical phenomena such as magnetic anisotropy and topological spin texture at oxide interfaces. Our study proposes a novel platform for engineering the ma gnetism and spin-orbit coupling at LaMnO3/SrIrO3 (3d-5d oxide) interfaces by tuning the LaMnO3 growth conditions which controls the lattice displacement and spin-correlated interfacial coupling through charge transfer. We report on a tunable and enhanced interface-induced Rashba spin-orbit coupling and Elliot-Yafet spin relaxation mechanism in LaMnO3/SrIrO3 bilayer with change in the underlying magnetic order of LaMnO3. We also observed enhanced spin-orbit coupling strength in LaMnO3/SrIrO3 compared to previously reported SrIrO3 layers. The X-Ray spectroscopy measurement reveals the quantitative valence of Mn and their impact on charge transfer. Further, we performed angle-dependent magnetoresistance measurements, which show signatures of magnetic proximity effect in SrIrO3 while reflecting the magnetic order of LaMnO3. Our work thus demonstrates a new route to engineer the interface induced Rashba spin-orbit coupling and magnetic proximity effect in 3d-5d oxide interfaces which makes SrIrO3 an ideal candidate for spintronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا