ترغب بنشر مسار تعليمي؟ اضغط هنا

133 - Z. Huang , W. L. Liu , H. Y. Wang 2020
Topological superconductors have long been predicted to host Majorana zero modes which obey non-Abelian statistics and have potential for realizing non-decoherence topological quantum computation. However, material realization of topological supercon ductors is still a challenge in condensed matter physics. Utilizing high-resolution angle-resolved photoemission spectroscopy and first-principles calculations, we predict and then unveil the coexistence of topological Dirac semimetal and topological insulator states in the vicinity of Fermi energy ($E_F$) in the titanium-based oxypnictide superconductor BaTi$_2$Sb$_2$O. Further spin-resolved measurements confirm its spin-helical surface states around $E_F$, which are topologically protected and give an opportunity for realization of Majorana zero modes and Majorana flat bands in one material. Hosting dual topological superconducting states, the intrinsic superconductor BaTi$_2$Sb$_2$O is expected to be a promising platform for further investigation of topological superconductivity.
52 - W. L. Liu , M. L. Chen , X. X. Li 2016
Atomically thin layers of transition-metal dicalcogenides (TMDCs) are often known to be metastable in the ambient atmosphere. Understanding the mechanism of degradation is essential for their future applications in nanoelectronics, and thus has attra cted intensive interest recently. Here, we demonstrate a systematic study of atomically thin WTe$_{2}$ in its low temperature quantum electronic transport properties. Strikingly, while the temperature dependence of few layered WTe$_{2}$ showed clear metallic tendency in the fresh state, degraded devices first exhibited a re-entrant insulating behavior, and finally entered a fully insulating state. Correspondingly, a crossover from parabolic to linear magnetoresistance, and finally to weak anti-localization was seen. Real-time Raman scattering measurement, together with transmission electron microscopy studies done before and after air degradation of atomically thin WTe$_{2}$ further confirmed that the material gradually form amorphous islands. It thus leads to localized electronic states and explains the low temperature Coulomb gap observed in transport measurements. Our study reveals for the first time the correlation between the unusual magnetotransport and disorder in few-layered WTe$_{2}$, which is indispensable in providing guidance on its future devices application.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا