ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the red sequence in a cluster of galaxies at z=1.62 and follow its evolution over the intervening 9.5 Gyr to the present day. Using deep YJKs imaging with the HAWK-I instrument on the VLT we identify a tight red sequence and construct its re st-frame i-band luminosity function (LF). There is a marked deficit of faint red galaxies in the cluster that causes a turnover in the LF. We compare the red sequence LF to that for clusters at z<0.8 correcting the luminosities for passive evolution. The shape of the cluster red sequence LF does not evolve between z=1.62 and z=0.6 but at z<0.6 the faint population builds up significantly. Meanwhile, between z=1.62 to 0.6 the inferred total light on the red sequence grows by a factor of about 2 and the bright end of the LF becomes more populated. We construct a simple model for red sequence evolution that grows the red sequence in total luminosity and matches the constant LF shape at z>0.6. In this model the cluster accretes blue galaxies from the field that are then quenched and subsequently allowed to merge. We find that 3--4 mergers among cluster galaxies during the 4 Gyr between z=1.62 and z=0.6 matches the observed luminosity function evolution between the two redshifts. The inferred merger rate is consistent with other studies of this cluster. Our result supports the picture that galaxy merging during the major growth phase of massive clusters is an important process in shaping the red sequence population at all luminosities.
We investigate the nonlinear response of photonic crystal waveguides with suppressed two-photon absorption. A moderate decrease of the group velocity (~ c/6 to c/15, a factor of 2.5) results in a dramatic (30x) enhancement of three-photon absorption well beyond the expected scaling, proportional to 1/(vg)^3. This non-trivial scaling of the effective nonlinear coefficients results from pulse compression, which further enhances the optical field beyond that of purely slow-group velocity interactions. These observations are enabled in mm-long slow-light photonic crystal waveguides owing to the strong anomalous group-velocity dispersion and positive chirp. Our numerical physical model matches measurements remarkably.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا