ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we consider the problem of compressive sensing (CS) recovery with a prior support and the prior support quality information available. Different from classical works which exploit prior support blindly, we shall propose novel CS recove ry algorithms to exploit the prior support adaptively based on the quality information. We analyze the distortion bound of the recovered signal from the proposed algorithm and we show that a better quality prior support can lead to better CS recovery performance. We also show that the proposed algorithm would converge in $mathcal{O}left(logmbox{SNR}right)$ steps. To tolerate possible model mismatch, we further propose some robustness designs to combat incorrect prior support quality information. Finally, we apply the proposed framework to sparse channel estimation in massive MIMO systems with temporal correlation to further reduce the required pilot training overhead.
In this paper, we consider the dynamic power control for delay-aware D2D communications. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we utili ze the interference filtering property of the CSMA-like MAC protocol and derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity power control algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for a sufficiently large carrier sensing distance. Finally, the proposed power control scheme is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.
In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem fo r C-RANs. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity delay-aware fronthaul allocation algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for sufficiently small cross link path gains. Finally, the proposed fronthaul allocation algorithm is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.
The cloud radio access network (C-RAN) is a promising network architecture for future mobile communications, and one practical hurdle for its large scale implementation is the stringent requirement of high capacity and low latency fronthaul connectin g the distributed remote radio heads (RRH) to the centralized baseband pools (BBUs) in the C-RAN. To improve the scalability of C-RAN networks, it is very important to take the fronthaul loading into consideration in the signal detection, and it is very desirable to reduce the fronthaul loading in C-RAN systems. In this paper, we consider uplink C-RAN systems and we propose a distributed fronthaul compression scheme at the distributed RRHs and a joint recovery algorithm at the BBUs by deploying the techniques of distributed compressive sensing (CS). Different from conventional distributed CS, the CS problem in C-RAN system needs to incorporate the underlying effect of multi-access fading for the end-to-end recovery of the transmitted signals from the users. We analyze the performance of the proposed end-to-end signal recovery algorithm and we show that the aggregate measurement matrix in C-RAN systems, which contains both the distributed fronthaul compression and multiaccess fading, can still satisfy the restricted isometry property with high probability. Based on these results, we derive tradeoff results between the uplink capacity and the fronthaul loading in C-RAN systems.
The recent trends of densification and centralized signal processing in radio access networks suggest that future networks may comprise ubiquitous antennas coordinated to form a network-wide gigantic array, referred to as the ubiquitous array (UA). I n this paper, the UA communication techniques are designed and analyzed based on a geometric model. Specifically, the UA is modeled as a continuous circular/spherical array enclosing target users and free-space propagation is assumed. First, consider the estimation of multiuser UA channels induced by user locations. Given single pilot symbols, a novel channel estimation scheme is proposed that decomposes training signals into Fourier/Laplace series and thereby translates multiuser channel estimation into peak detection of a derive function of location. The process is shown to suppress noise. Moreover, it is proved that estimation error due to interference diminishes with the increasing minimum user-separation distance following the power law, where the exponent is 1/3 and 1 for the circular and spherical UA, respectively. If orthogonal pilot sequences are used, channel estimation is found to be perfect. Next, consider channel-conjugate data transmission that maximizes received signal power. The power of interference between two users is shown to decay with the increasing user-separation distance sub-linearly and super-linearly for the circular and spherical UA, respectively. Furthermore, a novel multiuser precoding design is proposed by exciting different phase modes of the UA and controlling the mode weight factors to null interference. The number of available degrees of freedom for interference nulling using the UA is proved to be proportional to the minimum user-separation distance.
Spatial interference avoidance is a simple and effective way of mitigating interference in multi-antenna wireless networks. The deployment of this technique requires channel-state information (CSI) feedback from each receiver to all interferers, resu lting in substantial network overhead. To address this issue, this paper proposes the method of distributive control that intelligently allocates CSI bits over multiple feedback links and adapts feedback to channel dynamics. For symmetric channel distributions, it is optimal for each receiver to equally allocate the average sum-feedback rate for different feedback links, thereby decoupling their control. Using the criterion of minimum sum-interference power, the optimal feedback-control policy is shown using stochastic-optimization theory to exhibit opportunism. Specifically, a specific feedback link is turned on only when the corresponding transmit-CSI error is significant or interference-channel gain large, and the optimal number of feedback bits increases with this gain. For high mobility and considering the sphere-cap-quantized-CSI model, the optimal feedback-control policy is shown to perform water-filling in time, where the number of feedback bits increases logarithmically with the corresponding interference-channel gain. Furthermore, we consider asymmetric channel distributions with heterogeneous path losses and high mobility, and prove the existence of a unique optimal policy for jointly controlling multiple feedback links. Given the sphere-cap-quantized-CSI model, this policy is shown to perform water-filling over feedback links. Finally, simulation demonstrates that feedback-control yields significant throughput gains compared with the conventional differential-feedback method.
Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead es pecially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controllers state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controllers state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.
Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum , this paper studies spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency sub-channels or their disjoint sub-sets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancelation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of different network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا