ترغب بنشر مسار تعليمي؟ اضغط هنا

We study gravitational lensing of gravitational waves from compact object binaries as a probe of compact dark matter (DM) objects such as primordial black holes. Assuming a point mass lens, we perform parameter estimation of lensed gravitational wave signals from compact object binaries to determine the detectability of the lens with ground based laser interferometers. Then, considering binary populations that LIGO-Virgo has been probing, we derive a constraint on the abundance of compact DM from non-observation of lensed events. We find that the LIGO-Virgo observations imply that compact objects heavier than $M_l = 50M_odot$ can not constitute all DM and less than $15%$ of DM can be in compact objects heavier than $M_l = 200M_odot$. We also show that the DM fraction in compact objects can be probed by LIGO in its final sensitivity for $M_l > 20M_odot$ reaching $0.7%$ of the DM abundance at $M_l > 100M_odot$, and by ET for $M_l > 0.4M_odot$ reaching DM fraction as low as $3times 10^{-5}$ at $M_l > 20M_odot$.
We study the prospects of future gravitational wave (GW) detectors in probing primordial black hole (PBH) binaries. We show that across a broad mass range from $10^{-5}M_odot$ to $10^7M_odot$, future GW interferometers provide a potential probe of th e PBH abundance that is more sensitive than any currently existing experiment. In particular, we find that galactic PBH binaries with masses as low as $10^{-5}M_odot$ may be probed with ET, AEDGE and LISA by searching for nearly monochromatic continuous GW signals. Such searches could independently test the PBH interpretation of the ultrashort microlensing events observed by OGLE. We also consider the possibility of observing GWs from asteroid mass PBH binaries through graviton-photon conversion.
Quasi-conformal models are an appealing scenario that can offer naturally a strongly supercooled phase transition and a period of thermal inflation in the early Universe. A crucial aspect for the viability of these models is how the Universe escapes from the supercooled state. One possibility is that thermal inflation phase ends by nucleation and percolation of true vacuum bubbles. This route is not, however, always efficient. In such case another escape mechanism, based on the growth of quantum fluctuations of the scalar field that eventually destabilize the false vacuum, becomes relevant. We study both of these cases in detail in a simple yet representative model. We determine the duration of the thermal inflation, the curvature power spectrum generated for the scales that exit horizon during the thermal inflation, and the stochastic gravitational wave background from the phase transition. We show that these gravitational waves provide an observable signal from the thermal inflation in almost the entire parameter space of interest. Furthermore, the shape of the gravitational wave spectrum can be used to ascertain how the Universe escaped from supercooling.
We study production of gravitational waves (GWs) in strongly supercooled cosmological phase transitions in gauge theories. We extract from two-bubble lattice simulations the scaling of the GW source, and use it in many-bubble simulations in the thin- wall limit to estimate the resulting GW spectrum. We find that in presence of the gauge field the GW source decays with bubble radius as $propto R^{-3}$ after collisions. This leads to a GW spectrum that follows $Omega_{rm GW} propto omega^{2.3}$ at low frequencies and $Omega_{rm GW} propto omega^{-2.9}$ at high frequencies, marking a significant deviation from the popular envelope approximation.
We analyse the LIGO-Virgo data, including the recently released GWTC-2 dataset, to test a hypothesis that the data contains more than one population of black holes. We perform a maximum likelihood analysis including a population of astrophysical blac k holes with a truncated power-law mass function whose merger rate follows from star formation rate, and a population of primordial black holes for which we consider log-normal and critical collapse mass functions. We find that primordial black holes alone are strongly disfavoured by the data, while the best fit is obtained for the template combining astrophysical and primordial merger rates. Alternatively, the data may hint towards two different astrophysical black hole populations. We also update the constraints on primordial black hole abundance from LIGO-Virgo observations finding that in the $2-400 M_{odot}$ mass range, they must comprise less than 0.2% of dark matter.
We show that the recent NANOGrav result can be interpreted as a stochastic gravitational wave signal associated to formation of primordial black holes from high-amplitude curvature perturbations. The indicated amplitude and power of the gravitational wave spectrum agrees well with formation of primordial seeds for supermassive black holes.
We update predictions for the gravitational wave (GW) signal from a strongly supercooled phase transition in an illustrative classically conformal U(1)$_{B-L}$ model. We implement $propto gamma^2$ scaling of the friction on the bubble wall and update the estimates for the efficiency factors for GW production from bubble collisions and plasma-related sources. We take into account the fact that a small decay rate of the symmetry-breaking field may lead to brief matter-dominated era after the transition, as the field oscillates around its minimum before decaying. We find that a strong bubble collision signal occurs in a significant part of the parameter space, and that the modified redshift of the modes that re-enter the horizon during the matter-dominated period generates a characteristic tilted `plateau in the spectrum. The GW spectrum in this model would be detectable in the low-frequency range, e.g., by LISA, and in the mid-frequency range, e.g., by AION/MAGIS and AEDGE, and in the high-frequency range by LIGO and ET. The peak frequency of the signal is limited from below by collider constraints on the mass of the U(1)$_{B-L}$ gauge boson, while at high frequencies the slow decay of the scalar field and the resulting matter-dominated era diminishes the GW signal.
We study gravitational wave (GW) production in strongly supercooled cosmological phase transitions, taking particular care of models featuring a complex scalar field with a U$(1)$ symmetric potential. We perform lattice simulations of two-bubble coll isions to properly model the scalar field gradients, and compute the GW spectrum sourced by them using the thin-wall approximation in many-bubble simulations. We find that in the U$(1)$ symmetric case the low-frequency spectrum is $proptoomega$ whereas for a real scalar field it is $proptoomega^3$. In both cases the spectrum decays as $omega^{-2}$ at high frequencies.
155 - John Ellis , Ville Vaskonen 2020
Atom interferometers (AIs) on earth and in space offer good capabilities for measuring gravitational waves (GWs) in the mid-frequency deciHz band, complementing the sensitivities of the LIGO/Virgo and LISA experiments and enabling probes of possible modifications of the general relativity predictions for GW propagation. We illustrate these capabilities using the projected sensitivities of the AION (terrestrial) and AEDGE (space-based) AI projects, showing that AION could improve the present LIGO/Virgo direct limit on the graviton mass by a factor $sim 40$ to $simeq 10^{-24},$eV, and AEDGE could improve the limit by another order of magnitude. AION and AEDGE will also have greater sensitivity than LIGO to some scenarios for Lorentz violation.
We study strongly supercooled cosmological phase transitions. We perform numerical lattice simulations of two-bubble collisions and demonstrate that, depending on the scalar potential, in the collision the field can either bounce to a false vacuum or remain oscillating around the true vacuum. We study if these cases can be distinguished from their gravitational wave signals and discuss the possibility of black hole formation in the bubble collisions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا