ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a measurement scheme to directly detect odd-frequency superconductivity via time- and angle-resolved photoelectron fluctuation spectroscopy. The scheme includes two consecutive, non-overlapping probe pulses applied to a superconducting sam ple. The photoemitted electrons are collected in a momentum-resolved fashion. Correlations between signals with opposite momenta are analyzed. Remarkably, these correlations are directly proportional to the absolute square of the time-ordered anomalous Greens function of the superconductor. This setup allows for the direct detection of the hidden order parameter of odd-frequency pairing. We illustrate this general scheme by concretely analyzing the signal for the prototypical case of two-band superconductors, which are known to exhibit odd-frequency pairing under certain conditions.
We propose a scheme to perform braiding and all other unitary operations with Majorana modes in 1D that, in contrast to previous proposals, is solely based on resonant manipulation involving the first excited state extended over the modes. The detect ion of the population of the excited state also enables initialization and read-out. We provide an elaborated illustration of the scheme with a concrete device.
79 - Viktoriia Kornich 2020
Unconventional superconductivity is usually associated with symmetry breaking in the system. Here we consider a simple setup consisting of a piezoelectric film and an applied surface acoustic wave (SAW), that can break time and spatial translation sy mmetries. We study the symmetries of the possible SAW-induced order parameters, showing that even-frequency spin-triplet odd-parity order parameter can occur. We suggest different methods of how to engineer the symmetries of the order parameters using SAWs and the applications of such setups.
The recent proposals of devices with overlapping Andreev bound states (ABS) open up the opportunities to control and fine-tune their spectrum, that can be used in various applications. In this Article, we study the ABS in a device consisting of a sem iconducting nanowire covered with three superconducting leads. The ABS are formed at two junctions where the wire is not covered. They overlap in the wire where the electron propagation is 1D, and in one of the leads where the propagation is 3D. We identify a number of regimes where these two overlaps either dominate or compete, depending on the junction separation $L$ as compared to the correlation lengths $xi_{rm w}$, $xi_{rm s}$ in the wire and in the lead, respectively. We utilize a simple model of 1D electron spectrum in the nanowire and take into account the quality of the contact between the nanowire and the superconducting lead. We present the spectra for different $L$, detailing the transition from a single-ABS in the regime of strong 1D hybridization to two almost independent ABS hybridized at the degeneracy points, in the regime of weak 1D hybridization. We present the details of merging the upper ABS with the continuous spectrum upon decreasing $L$. We study in detail the effect of quantum interference due to the phase accumulated during the electron passage between the junctions. We develop a perturbation theory for analytical treatment of hybridization. We address an interesting separate case of fully transparent junctions. We derive and exemplify a perturbation theory suitable for the competition regime demonstrating the interference of 1D and two 3D transmission amplitudes.
We study how the shape of a periodic magnetic field affects the presence of Majorana bound states (MBS) in a nanowire-superconductor system. Motivated by the field configurations that can be produced by an array of nanomagnets, we consider spiral fie lds with an elliptic cross-section and fields with two sinusoidal components. We show that MBS are robust to imperfect helical magnetic fields. In particular, if the amplitude of one component is tuned to the value determined by the superconducting order parameter in the wire, the MBS can exist even if the second component has a much smaller amplitude. We also explore the effect of the chemical potential on the phase diagram. Our analysis is both numerical and analytical, with good agreement between the two methods.
The recent proposals of experiments with single Andreev bound states make relevant a detailed analysis of these states in multi-terminal superconducting nanostructures. We evaluate the energy splitting of degenerate Andreev bound states, that overlap in a superconducting lead, and find that the splitting is reduced in comparison with their energy by a small factor $sqrt{R G_Q}$, $R G_Q$ being the dimensionless resistance of the overlap region in the normal state. This permits quantum manipulation of the quasiparticles in these states. We provide a simple scheme of such manipulation.
Many quantum dot qubits operate in regimes where the energy splittings between qubit states are large and phonons can be the dominant source of decoherence. The recently proposed charge quadrupole qubit, based on one electron in a triple quantum dot, employs a highly symmetric charge distribution to suppress the influence of charge noise. To study the effects of phonons on the charge quadrupole qubit, we consider Larmor and Ramsey pulse sequences to identify favorable operating parameters. We show that it is possible to implement typical gates with $>99.99%$ fidelity in the presence of phonons and charge noise.
We study the effect of Rashba spin-orbit coupling (SOC) on the charge and spin degrees of freedom of a quasi-one-dimensional (quasi-1D) Wigner crystal. As electrons in a quasi-1D Wigner crystal can move in the transverse direction, SOC cannot be gaug ed away in contrast to the pure 1D case. We show that for weak SOC, a partial gap in the spectrum opens at certain ratios between density of electrons and the inverse Rashba length. We present how the low-energy branch of charge degrees of freedom deviates due to SOC from its usual linear dependence at small wave vectors. In the case of strong SOC, we show that spin sector of a Wigner crystal cannot be described by an isotropic antiferromagnetic Heisenberg Hamiltonian any more, and that instead the ground state of neighboring electrons is mostly a triplet state. We present a new spin sector Hamiltonian and discuss the spectrum of Wigner crystal in this limit.
We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxatio n and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.
We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electr on-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on non-equilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا