ﻻ يوجد ملخص باللغة العربية
Unconventional superconductivity is usually associated with symmetry breaking in the system. Here we consider a simple setup consisting of a piezoelectric film and an applied surface acoustic wave (SAW), that can break time and spatial translation symmetries. We study the symmetries of the possible SAW-induced order parameters, showing that even-frequency spin-triplet odd-parity order parameter can occur. We suggest different methods of how to engineer the symmetries of the order parameters using SAWs and the applications of such setups.
The possibility of non-s-wave superconductivity induced by phonons is investigated using a simple model that is inspired by Sr$_2$RuO$_4$. The model assumes a two-dimensional electronic structure, a two-dimensional spin-fluctuation spectrum, and thre
We discuss a scenario for interface-induced superconductivity involving pairing by dipolar excitations proximate to a two-dimensional electron system controlled by a transverse electric field. If the interface consists of transition metal oxide mater
Various mechanisms have been put forward for cuprate superconductivity, which fit largely into two camps: spin-fluctuation and electron-phonon (el-ph) mechanisms. However, in spite of a large effort, electron-phonon interactions are not fully underst
Simultaneous low-temperature electrical resistivity and Hall effect measurements were performed on single-crystalline Bi2Se3 under applied pressures up to 50 GPa. As a function of pressure, superconductivity is observed to onset above 11 GPa with a t
The pairing mechanism in iron-based superconductors is believed to be unconventional, i.e. not phonon-mediated. The achieved transition temperatures Tc in these superconductors are still significantly below those of some of the cuprates, with the exc