ترغب بنشر مسار تعليمي؟ اضغط هنا

Type IIP Supernovae (SNe) are expected to arise from Red Supergiant stars (RSGs). These stars have observed mass-loss rates that span more than two orders of magnitude, from $< 10^{-6}$ solar masses yr$^{-1}$ to almost $ 10^{-4} $ solar masses yr$^{- 1}$. Thermal bremsstrahlung X-ray emission from at least some IIPs should reflect the larger end of the high mass-loss rates. Strangely, no IIP SNe are seen where the X-ray luminosity is large enough to suggest mass-loss rates greater than about $ 10^{-5} $ solar masses yr$^{-1}$. We investigate if this could be due to absorption of the X-ray emission. After carefully studying all the various aspects, we conclude that absorption would not be large enough to prevent us from having detected X-ray emission from high mass-loss rate IIPs. This leads us to the conclusion that there may be an upper limit of $sim 10^{-5} $ solar masses yr$^{-1}$ to the mass-loss rate of Type IIP progenitors, and therefore to the luminosity of RSGs that explode to form Type IIPs. This is turn suggests an upper limit of $leq 19 $ solar masses for the progenitor mass of a Type IIP SN. This limit is close to that obtained by direct detection of IIP progenitors, as well as that suggested by recent stellar evolution calculations. Although the statistics need to be improved, many current indicators support the notion that RSGs above $sim 19 $ solar masses do not explode to form Type IIP SNe.
SN 1996cr, located in the Circinus Galaxy (3.7 Mpc, z ~ 0.001) was non-detected in X-rays at ~ 1000 days yet brightened to ~ 4 x 10^{39} erg/s (0.5-8 keV) after 10 years (Bauer et al. 2008). A 1-D hydrodynamic model of the ejecta-CSM interaction prod uces good agreement with the measured X-ray light curves and spectra at multiple epochs. We conclude that the progenitor of SN 1996cr could have been a massive star, M > 30 M_solar, which went from an RSG to a brief W-R phase before exploding within its ~ 0.04 pc wind-blown shell (Dwarkadas et al. 2010). Further analysis of the deep Chandra HETG observations allows line-shape fitting of a handful of bright Si and Fe lines in the spectrum. The line shapes are well fit by axisymmetric emission models with an axis orientation ~ 55 degrees to our line-of-sight. In the deep 2009 epoch the higher ionization Fe XXVI emission is constrained to high lattitudes: the Occam-est way to get the Fe H-like emission coming from high latitude/polar regions is to have more CSM at/around the poles than at mid and lower lattitudes, along with a symmetric ejecta explosion/distribution. Similar CSM/ejecta characterization may be possible for other SNe and, with higher-throughput X-ray observations, for gamma-ray burst remnants as well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا