ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling SN 1996crs X-ray lines at high-resolution: Sleuthing the ejecta/CSM geometry

265   0   0.0 ( 0 )
 نشر من قبل Daniel Dewey
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SN 1996cr, located in the Circinus Galaxy (3.7 Mpc, z ~ 0.001) was non-detected in X-rays at ~ 1000 days yet brightened to ~ 4 x 10^{39} erg/s (0.5-8 keV) after 10 years (Bauer et al. 2008). A 1-D hydrodynamic model of the ejecta-CSM interaction produces good agreement with the measured X-ray light curves and spectra at multiple epochs. We conclude that the progenitor of SN 1996cr could have been a massive star, M > 30 M_solar, which went from an RSG to a brief W-R phase before exploding within its ~ 0.04 pc wind-blown shell (Dwarkadas et al. 2010). Further analysis of the deep Chandra HETG observations allows line-shape fitting of a handful of bright Si and Fe lines in the spectrum. The line shapes are well fit by axisymmetric emission models with an axis orientation ~ 55 degrees to our line-of-sight. In the deep 2009 epoch the higher ionization Fe XXVI emission is constrained to high lattitudes: the Occam-est way to get the Fe H-like emission coming from high latitude/polar regions is to have more CSM at/around the poles than at mid and lower lattitudes, along with a symmetric ejecta explosion/distribution. Similar CSM/ejecta characterization may be possible for other SNe and, with higher-throughput X-ray observations, for gamma-ray burst remnants as well.

قيم البحث

اقرأ أيضاً

116 - Daniel Dewey 2013
Handed the baton from ROSAT, early observations of SN 1987A with the Chandra HETG and the XMM-Newton RGS showed broad lines with a FWHM of 10^4 km/s: the SN blast wave was continuing to shock the H II region around SN 1987A. Since then, its picturesq ue equatorial ring (ER) has been shocked, giving rise to a growing, dominant narrow-lined component. Even so, current HETG and RGS observations show that a broad component is still present and contributes 20% of the 0.5--2 keV flux. SN 1987As X-ray behavior can be modeled with a minimum of free parameters as the sum of two simple 1D hydrodynamic simulations: i) an on-going interaction with H II region material producing the broad emission lines and most of the 3--10 keV flux, and ii) an interaction with the dense, clumpy ER material that dominates the 0.5--2 keV flux. Toward the future, we predict a continued growth of the broad component but a drop in the 0.5--2 keV flux, once no new dense ER material is being shocked. When? Time, and new data, will tell.
We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO $J$=2 $!rightarrow!$ 1, $J$=6 $!rightarrow!$ 5, and SiO $J$=5 $!rightarrow!$ 4 to $J$=7 $!rightarrow!$ 6 images, which clearly resolve the eje cta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H$alpha$ images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO $J$=6 $!rightarrow!$ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO $J$=6 $!rightarrow!$ 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO $J$=2 $!rightarrow!$ 1 and SiO $J$=5 $!rightarrow!$ 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared--millimeter spectral energy distribution give ejecta dust temperatures of 18--23K. We revise the ejecta dust mass to $mathrm{M_{dust}} = 0.2-0.4$M$_odot$ for carbon or silicate grains, or a maximum of $<0.7$M$_odot$ for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
88 - C. D. Bochenek 2017
X-ray emission is one of the signposts of circumstellar interaction in supernovae (SNe), but until now, it has been observed only in core-collapse SNe. The level of thermal X-ray emission is a direct measure of the density of the circumstellar medium (CSM), and the absence of X-ray emission from Type Ia SNe has been interpreted as a sign of a very low density CSM. In this paper, we report late-time (500--800 days after discovery) X-ray detections of SN 2012ca in {it Chandra} data. The presence of hydrogen in the initial spectrum led to a classification of Type Ia-CSM, ostensibly making it the first SN~Ia detected with X-rays. Our analysis of the X-ray data favors an asymmetric medium, with a high-density component which supplies the X-ray emission. The data suggest a number density $> 10^8$ cm$^{-3}$ in the higher-density medium, which is consistent with the large observed Balmer decrement if it arises from collisional excitation. This is high compared to most core-collapse SNe, but it may be consistent with densities suggested for some Type IIn or superluminous SNe. If SN 2012ca is a thermonuclear SN, the large CSM density could imply clumps in the wind, or a dense torus or disk, consistent with the single-degenerate channel. A remote possibility for a core-degenerate channel involves a white dwarf merging with the degenerate core of an asymptotic giant branch star shortly before the explosion, leading to a common envelope around the SN.
Based on observations with the $Chandra$ X-ray Observatory, we present the latest spectral evolution of the X-ray remnant of SN 1987A (SNR 1987A). We present a high-resolution spectroscopic analysis using our new deep ($sim$312 ks) $Chandra$ HETG obs ervation taken in March 2018, as well as archival $Chandra$ gratings spectroscopic data taken in 2004, 2007, and 2011 with similarly deep exposures ($sim$170 - 350 ks). We perform detailed spectral model fits to quantify changing plasma conditions over the last 14 years. Recent changes in electron temperatures and volume emission measures suggest that the shocks moving through the inner ring have started interacting with less dense circumstellar material, probably beyond the inner ring. We find significant changes in the X-ray line flux ratios (among H- and He-like Si and Mg ions) in 2018, consistent with changes in the thermal conditions of the X-ray emitting plasma that we infer based on the broadband spectral analysis. Post-shock electron temperatures suggested by line flux ratios are in the range $sim$0.8 - 2.5 keV as of 2018. We do not yet observe any evidence of substantial abundance enhancement, suggesting that the X-ray emission component from the reverse-shocked metal-rich ejecta is not yet significant in the observed X-ray spectrum.
We propose the development of X-ray interferometry (XRI), to reveal the universe at high energies with ultra-high spatial resolution. With baselines which can be accommodated on a single spacecraft, XRI can reach 100 $mu$as resolution at 10 AA (1.2 k eV) and 20 $mu$as at 2 AA (6 keV), enabling imaging and imaging-spectroscopy of (for example) X-ray coronae of nearby accreting supermassive black holes (SMBH) and the SMBH `shadow; SMBH accretion flows and outflows; X-ray binary winds and orbits; stellar coronae within ~100 pc and many exoplanets which transit across them. For sufficiently luminous sources XRI will resolve sub-pc scales across the entire observable universe, revealing accreting binary SMBHs and enabling trigonometric measurements of the Hubble constant with X-ray light echoes from quasars or explosive transients. A multi-spacecraft `constellation interferometer would resolve well below 1 $mu$as, enabling SMBH event horizons to be resolved in many active galaxies and the detailed study of the effects of strong field gravity on the dynamics and emission from accreting gas close to the black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا