ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafunctions are a particular class of generalized functions defined on a hyperreal field $mathbb{R}^{*}supsetmathbb{R}$ that allow to solve variational problems with no classical solutions. We recall the construction of ultrafunctions and we study the relationships between these generalized solutions and classical minimizing sequences. Finally, we study some examples to highlight the potential of this approach.
In this paper we prove the existence of vortices, namely standing waves with non null angular momentum, for the nonlinear Klein-Gordon equation in dimension $Ngeq 3$. We show with variational methods that the existence of these kind of solutions, tha t we have called emph{hylomorphic vortices}, depends on a suitable energy-charge ratio. Our variational approach turns out to be useful for numerical investigations as well. In particular, some results in dimension N=2 are reported, namely exemplificative vortex profiles by varying charge and angular momentum, together with relevant trends for vortex frequency and energy-charge ratio. The stability problem for hylomorphic vortices is also addressed. In the absence of conclusive analytical results, vortex evolution is numerically investigated: the obtained results suggest that, contrarily to solitons with null angular momentum, vortex are unstable.
We study the behavior of the soliton solutions of the equation i((partial{psi})/(partialt))=-(1/(2m)){Delta}{psi}+(1/2)W_{{epsilon}}({psi})+V(x){psi} where W_{{epsilon}} is a suitable nonlinear term which is singular for {epsilon}=0. We use the stron g nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {epsilon}to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا