ترغب بنشر مسار تعليمي؟ اضغط هنا

408 - Yi Zhu , Vidur Raj , Ziyuan Li 2021
Highly sensitive photodetectors with single photon level detection is one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, we demonstrate InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias. We use top-down etched, heavily doped p-type InP nanowires and n-type AZO/ZnO carrier selective contact to form a radial p-n junction with a built-in electric field exceeding 3x10^5 V/cm at 0 V. The device exhibits broadband light sensitivity and can distinguish a single photon per pulse from the dark noise at 0 V, enabled by its design to realize near-ideal broadband absorption, extremely low dark current, and highly efficient charge carrier separation. Meanwhile, the bandwidth of the device reaches above 600 MHz with a timing jitter of 538 ps. The proposed device design provides a new pathway towards low-cost, high-sensitivity, self-powered photodetectors for numerous future applications.
Both axial and radial junction nanowire solar cells have their challenges and advantages. However, so far, there is no review that explicitly provides a detailed comparative analysis of both axial and radial junction solar cells. This article reviews some of the recent results on axial and radial junction nanowire solar cells with an attempt to perform a comparative study between the optical and device behavior of these cells. In particular, we start by reviewing different results on how the absorption can be tuned in axial and radial junction solar cells. We also discuss results on some of the critical device concepts that are required to achieve high efficiency in axial and radial junction solar cells. We include a section on new device concepts that can be realized in nanowire structures. Finally, we conclude this review by discussing a few of the standing challenges of nanowire solar cells.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا