ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of rare-earth ion size on the octahedral distortions in rare-earth chromites (RCrO3, R = Lu, Tb, Gd, Eu, Sm) crystallizing in the orthorhombic structure has been studied using Raman scattering and synchrotron powder x-ray diffraction up to 20 GPa. From our studies on RCrO3 we found that the octahedral tilts (distortions) increase with pressure. This is contrary to the earlier report which suggests that in LaCrO3, the distortions decrease with pressure leading to a more ordered phase at high pressure. Here we observe that the rate of increase in distortion decreases with the increase in R-ion radii. This occurs due to the reduction in the compression of RO12 polyhedra with a corresponding increase in the compression of the CrO6 octahedra with increasing R-ion radii. From the Raman studies, we predict a critical R-ion radii, above which we expect the distortions in RCrO3 to reduce with increasing pressure leading to what is observed in the case of LaCrO3. These Raman results are consistent with our pressure dependent structural studies on RCrO3 (R = Gd, Eu, Sm). Also, our results suggest that the pressure dependence of Neel temperature, TNCr, (where the Cr3+ spin orders) in RCrO3 is mostly affected by the compressions of Cr-O bonds rather than the alteration of octahedral tilts.
Two distinct ferromagnetic phases of LaMn$_{0.5}$Co$_{0.5}$O$_{3}$ having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature $textit{T}_{c}$ is found to be different for both the phases. T he origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn - O - Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in $textit{T}_{c}$. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the $textit{T}_{c}$. Electrical transport properties of both the phases have been investigated based on the lattice distortion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا