ﻻ يوجد ملخص باللغة العربية
The effect of rare-earth ion size on the octahedral distortions in rare-earth chromites (RCrO3, R = Lu, Tb, Gd, Eu, Sm) crystallizing in the orthorhombic structure has been studied using Raman scattering and synchrotron powder x-ray diffraction up to 20 GPa. From our studies on RCrO3 we found that the octahedral tilts (distortions) increase with pressure. This is contrary to the earlier report which suggests that in LaCrO3, the distortions decrease with pressure leading to a more ordered phase at high pressure. Here we observe that the rate of increase in distortion decreases with the increase in R-ion radii. This occurs due to the reduction in the compression of RO12 polyhedra with a corresponding increase in the compression of the CrO6 octahedra with increasing R-ion radii. From the Raman studies, we predict a critical R-ion radii, above which we expect the distortions in RCrO3 to reduce with increasing pressure leading to what is observed in the case of LaCrO3. These Raman results are consistent with our pressure dependent structural studies on RCrO3 (R = Gd, Eu, Sm). Also, our results suggest that the pressure dependence of Neel temperature, TNCr, (where the Cr3+ spin orders) in RCrO3 is mostly affected by the compressions of Cr-O bonds rather than the alteration of octahedral tilts.
We report a Raman scattering study of six rare earth orthoferrites RFeO3, with R = La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment of the observed phonon modes
We report on electronic collective excitations in RMn2O5 (R= Pr, Sm, Gd, Tb) showing condensation starting at and below TNsimTCsim40-50 K. Its origin is understood as partial delocalized eg electron orbitals in the Jahn-Teller distortion of the pyram
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find h
The time-differential perturbed-angular-correlation (TDPAC) technique was applied to the study of the internal electric-field gradient (EFG) in Eu- and Ho-sesquioxides in their cubic bixbyite phases. The results, as well as previous characterizations
We performed femtosecond reflection spectroscopy on a series of perovskite-type cobalt oxide $R$BaCo$_2$O$_{6-delta}$ ($R$=Sm, Gd, and Tb) crystals, in which the electronic transfer was controlled by $R$. The transient reflectivity and the optical