ترغب بنشر مسار تعليمي؟ اضغط هنا

Concepts in a certain domain of science are linked via intrinsic connections reflecting the structure of knowledge. To get a qualitative insight and a quantitative description of this structure, we perform empirical analysis and modeling of the netwo rk of scientific concepts in the domain of physics. To this end we use a collection of manuscripts submitted to the e-print repository arXiv and the vocabulary of scientific concepts collected via the ScienceWISE.info platform and construct a network of scientific concepts based on their co-occurrences in publications. The resulting complex network possesses a number of specific features (high node density, dissortativity, structural correlations, skewed node degree distribution) that can not be understood as a result of simple growth by several commonly used network models. We show that the model based on a simultaneous account of two factors, growth by blocks and preferential selection, gives an explanation of empirically observed properties of the concepts network.
Novelty is an inherent part of innovations and discoveries. Such processes may be considered as an appearance of new ideas or as an emergence of atypical connections between the existing ones. The importance of such connections hints for investigatio n of innovations through network or graph representation in the space of ideas. In such representation, a graph node corresponds to the relevant concept (idea), whereas an edge between two nodes means that the corresponding concepts have been used in a common context. In this study we address the question about a possibility to identify the edges between existing concepts where the innovations may emerge. To this end, we use a well-documented scientific knowledge landscape of 1.2M arXiv.org manuscripts dated starting from April 2007 and until September 2019. We extract relevant concepts for them using the ScienceWISE.info platform. Combining approaches developed in complex networks science and graph embedding, we discuss the predictability of edges (links) on the scientific knowledge landscape where the innovations may appear.
We demonstrate how analysis of co-clustering in bipartite networks may be used as a bridge to connect, compare and complement clustering results about community structure in two different spaces: single-mode bipartite network projections. As a case s tudy we consider scientific knowledge, which is represented as a complex bipartite network of articles and related concepts. Connecting clusters of articles and clusters of concepts via article-to-concept bipartite co-clustering, we demonstrate how concept features (e.g. subject classes) may be inferred from the article ones.
Community detection techniques are widely used to infer hidden structures within interconnected systems. Despite demonstrating high accuracy on benchmarks, they reproduce the external classification for many real-world systems with a significant leve l of discrepancy. A widely accepted reason behind such outcome is the unavoidable loss of non-topological information (such as node attributes) encountered when the original complex system is represented as a network. In this article we emphasize that the observed discrepancies may also be caused by a different reason: the external classification itself. For this end we use scientific publication data which i) exhibit a well defined modular structure and ii) hold an expert-made classification of research articles. Having represented the articles and the extracted scientific concepts both as a bipartite network and as its unipartite projection, we applied modularity optimization to uncover the inner thematic structure. The resulting clusters are shown to partly reflect the author-made classification, although some significant discrepancies are observed. A detailed analysis of these discrepancies shows that they carry essential information about the system, mainly related to the use of similar techniques and methods across different (sub)disciplines, that is otherwise omitted when only the external classification is considered.
In this chapter we give an overview of the application of complex network theory to quantify some properties of language. Our study is based on two fables in Ukrainian, Mykyta the Fox and Abu-Kasyms slippers. It consists of two parts: the analysis of frequency-rank distributions of words and the application of complex-network theory. The first part shows that the text sizes are sufficiently large to observe statistical properties. This supports their selection for the analysis of typical properties of the language networks in the second part of the chapter. In describing language as a complex network, while words are usually associated with nodes, there is more variability in the choice of links and different representations result in different networks. Here, we examine a number of such representations of the language network and perform a comparative analysis of their characteristics. Our results suggest that, irrespective of link representation, the Ukrainian language network used in the selected fables is a strongly correlated, scale-free, small world. We discuss how such empirical approaches may help form a useful basis for a theoretical description of language evolution and how they may be used in analyses of other textual narratives.
Although a number of models have been developed to investigate the emergence of culture and evolutionary phases in social systems, one important aspect has not yet been sufficiently emphasized. This is the structure of the underlaying network of soci al relations serving as channels in transmitting cultural traits, which is expected to play a crucial role in the evolutionary processes in social systems. In this paper we contribute to the understanding of the role of the network structure by developing a layered ego-centric network structure based model, inspired by the social brain hypothesis, to study transmission of cultural traits and their evolution in social network. For this model we first find analytical results in the spirit of mean-field approximation and then to validate the results we compare them with the results of extensive numerical simulations.
Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often in volve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.
Big data open up unprecedented opportunities to investigate complex systems including the society. In particular, communication data serve as major sources for computational social sciences but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. By using the filtered networks we investigated the statistics and temporal evolution of small directed 3-motifs and conclude that closed communication triads have a formation time-scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve to other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.
Mobile phone communication as digital service generates ever-increasing datasets of human communication actions, which in turn allow us to investigate the structure and evolution of social interactions and their networks. These datasets can be used t o study the structuring of such egocentric networks with respect to the strength of the relationships by assuming direct dependence of the communication intensity on the strength of the social tie. Recently we have discovered that there are significant differences between the first and further best friends from the point of view of age and gender preferences. Here we introduce a control parameter $p_{rm max}$ based on the statistics of communication with the first and second best friend and use it to filter the data. We find that when $p_{rm max}$ is decreased the identification of the best friend becomes less ambiguous and the earlier observed effects get stronger, thus corroborating them.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا