ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider non-parametric estimation and inference of conditional moment models in high dimensions. We show that even when the dimension $D$ of the conditioning variable is larger than the sample size $n$, estimation and inference is feasible as lon g as the distribution of the conditioning variable has small intrinsic dimension $d$, as measured by locally low doubling measures. Our estimation is based on a sub-sampled ensemble of the $k$-nearest neighbors ($k$-NN) $Z$-estimator. We show that if the intrinsic dimension of the covariate distribution is equal to $d$, then the finite sample estimation error of our estimator is of order $n^{-1/(d+2)}$ and our estimate is $n^{1/(d+2)}$-asymptotically normal, irrespective of $D$. The sub-sampling size required for achieving these results depends on the unknown intrinsic dimension $d$. We propose an adaptive data-driven approach for choosing this parameter and prove that it achieves the desired rates. We discuss extensions and applications to heterogeneous treatment effect estimation.
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric met hod for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local $ell_1$-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.
Estimators computed from adaptively collected data do not behave like their non-adaptive brethren. Rather, the sequential dependence of the collection policy can lead to severe distributional biases that persist even in the infinite data limit. We de velop a general method -- $mathbf{W}$-decorrelation -- for transforming the bias of adaptive linear regression estimators into variance. The method uses only coarse-grained information about the data collection policy and does not need access to propensity scores or exact knowledge of the policy. We bound the finite-sample bias and variance of the $mathbf{W}$-estimator and develop asymptotically correct confidence intervals based on a novel martingale central limit theorem. We then demonstrate the empirical benefits of the generic $mathbf{W}$-decorrelation procedure in two different adaptive data settings: the multi-armed bandit and the autoregressive time series.
We consider a ubiquitous scenario in the Internet economy when individual decision-makers (henceforth, agents) both produce and consume information as they make strategic choices in an uncertain environment. This creates a three-way tradeoff between exploration (trying out insufficiently explored alternatives to help others in the future), exploitation (making optimal decisions given the information discovered by other agents), and incentives of the agents (who are myopically interested in exploitation, while preferring the others to explore). We posit a principal who controls the flow of information from agents that came before, and strives to coordinate the agents towards a socially optimal balance between exploration and exploitation, not using any monetary transfers. The goal is to design a recommendation policy for the principal which respects agents incentives and minimizes a suitable notion of regret. We extend prior work in this direction to allow the agents to interact with one another in a shared environment: at each time step, multiple agents arrive to play a Bayesian game, receive recommendations, choose their actions, receive their payoffs, and then leave the game forever. The agents now face two sources of uncertainty: the actions of the other agents and the parameters of the uncertain game environment. Our main contribution is to show that the principal can achieve constant regret when the utilities are deterministic (where the constant depends on the prior distribution, but not on the time horizon), and logarithmic regret when the utilities are stochastic. As a key technical tool, we introduce the concept of explorable actions, the actions which some incentive-compatible policy can recommend with non-zero probability. We show how the principal can identify (and explore) all explorable actions, and use the revealed information to perform optimally.
Individual decision-makers consume information revealed by the previous decision makers, and produce information that may help in future decisions. This phenomenon is common in a wide range of scenarios in the Internet economy, as well as in other do mains such as medical decisions. Each decision-maker would individually prefer to exploit: select an action with the highest expected reward given her current information. At the same time, each decision-maker would prefer previous decision-makers to explore, producing information about the rewards of various actions. A social planner, by means of carefully designed information disclosure, can incentivize the agents to balance the exploration and exploitation so as to maximize social welfare. We formulate this problem as a multi-armed bandit problem (and various generalizations thereof) under incentive-compatibility constraints induced by the agents Bayesian priors. We design an incentive-compatible bandit algorithm for the social planner whose regret is asymptotically optimal among all bandit algorithms (incentive-compatible or not). Further, we provide a black-box reduction from an arbitrary multi-arm bandit algorithm to an incentive-compatible one, with only a constant multiplicative increase in regret. This reduction works for very general bandit setting that incorporate contexts and arbitrary auxiliary feedback.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا