ترغب بنشر مسار تعليمي؟ اضغط هنا

We create a baseline of the black hole (BH) mass (MBH) - stellar-velocity dispersion (sigma) relation for active galaxies, using a sample of 66 local (0.02<z<0.09) Seyfert-1 galaxies, selected from the Sloan Digital Sky Survey (SDSS). Analysis of SDS S images yields AGN luminosities free of host-galaxy contamination and morphological classification. 51/66 galaxies have spiral morphology. 28 bulges have Sersic index n<2 and are considered candidate pseudo bulges, with eight being definite pseudo bulges based on multiple classification criteria met. Only 4/66 galaxies show sign of interaction/merging. High signal-to-noise ratio Keck spectra provide the width of the broad Hbeta emission line free of FeII emission and stellar absorption. AGN luminosity and Hbeta line widths are used to estimate MBH. The Keck-based spatially-resolved kinematics is used to determine stellar-velocity dispersion within the spheroid effective radius. We find that sigma can vary on average by up to 40% across definitions commonly used in the literature, emphasizing the importance of using self-consistent definitions in comparisons and evolutionary studies. The MBH-sigma relation for our Seyfert-1 galaxies has the same intercept and scatter as that of reverberation-mapped AGNs as well as quiescent galaxies, consistent with the hypothesis that our single epoch MBH estimator and sample selection do not introduce significant biases. Barred galaxies, merging galaxies, and those hosting pseudo bulges do not represent outliers in the MBH-sigma relation. This is in contrast with previous work, although no firm conclusion can be drawn due to the small sample size and limited resolution of the SDSS images.
We present narrow- and medium-band HST imaging, with additional supporting ground-based data, for 8 galaxies identified as hosting fading AGN. These have AGN-ionized gas projected >10 kpc from the nucleus, and significant shortfall of ionizing radiat ion between the distant gas and the AGN, indicating fading AGN on ~50,000-year timescales. Every system shows evidence of ongoing or past interactions; a similar sample of obscured AGN with extended ionized clouds shares this incidence of disturbances. Several systems show multiple dust lanes in different orientations, broadly fit by differentially precessing disks of accreted material ~1.5 Gyr after initial arrival. The gas has lower metallicity than the nuclei; three systems have abundances uniformly well below solar, consistent with an origin in tidally disrupted low-luminosity galaxies, while some systems have more nearly solar abundances (accompanied by such signatures as multiple Doppler components), which may suggest redistribution of gas by outflows within the host galaxies themselves. These aspects are consistent with a tidal origin for the extended gas in most systems, although the ionized gas and stellar tidal features do not always match closely. In contrast to clouds near radio-loud AGN, these are dominated by rotation, in some cases in warped disks. Outflows are important only in localized regions near some of the AGN. In UGC 7342 and UGC 11185, luminous star clusters are seen within projected ionization cones, potentially triggered by outflows. As in the discovery example Hannys Voorwerp/IC 2497, some clouds lack a strong correlation between H-alpha surface brightness and ionization parameter, indicating unresolved fine structure. Together with thin coherent filaments spanning several kpc, persistence of these structures over their orbital lifetimes may require a role for magnetic confinement. (Abridged)
The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limi ted success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including H-beta and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases the measured lag (t_cen) of Fe II is longer than that of H-beta, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Veron-Cetty et al. (2004), we find t_cen(Fe II)/t_cen(H-beta) = 1.9+-0.6 in NGC 4593 and 1.5+-0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.
We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kpc scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies. For PG1012+008, we determine the stellar velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M_BH-sigma* relation of active galactic nuclei.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا