ترغب بنشر مسار تعليمي؟ اضغط هنا

The extended narrow-line region of two type-I quasi-stellar objects

419   0   0.0 ( 0 )
 نشر من قبل Semyeong Oh
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kpc scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies. For PG1012+008, we determine the stellar velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M_BH-sigma* relation of active galactic nuclei.

قيم البحث

اقرأ أيضاً

200 - Enrico Congiu 2017
We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the diff erent regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.
We present deep long slit spectra of Mkn79 in position angles PA=12$^{o}$ and PA=50$^{o}$ obtained with the WHT. These data prove the existence of an extended narrow line region in PA=12$^{o}$, which coincides with the triplet radio structure (Ulvest ad & Wilson 1984) and the observed outflow of material from the nucleus at PA=10$^{o}$ (Whittle et al. 1988). The ratios of the high to low ionization lines indicate a higher level of gas excitation in PA=12$^{o}$ compared to PA=50$^{o}$. The [NII]$lambda$6583/H$alpha$ and [SII]$lambda$6717,31/H$alpha$ versus [OIII]$lambda$5007/H$beta$ line ratios are consistent with excitation by an AGN continuum rather than a HII region.
The properties of narrow-line Seyfert 1 (NLS1) galaxies, the links and correlations between them, and the physics behind them, are still not well understood. Apart from accretion rates and black hole masses, density and outflows were speculated to be among the main drivers of the NLS1 phenomenon. Here, we utilize the diagnostic power of the [SII]6716,6731 intensity ratio to measure the density of the NLR systematically and homogeneously for a large sample of NLS1 galaxies, and we perform a comparison with a sample of broad-line type 1 AGN. We report the discovery of a zone of avoidance in density in the sense that AGN with broad lines (FWHM_Hbeta > 2000 km/s) avoid low densities, while NLS1 galaxies show a wider distribution in the NLR density, including a significant number of objects with low densities. A correlation analysis further shows that the Eddington ratio L/L_Edd anti-correlates with density. We investigate a number of different models for the zone of avoidance in density. Supersolar metallicities and temperature effects, a strong starburst contribution in NLS1 galaxies, different NLR extents and selective obscuration are considered unlikely. Possible differences in the fraction of matter-bounded clouds and differences in the interstellar media of the host galaxies of NLS1 galaxies and broad-line Seyfert 1 (BLS1) galaxies can only be tested further with future observations. We tentatively favor the effects of winds/outflows, stronger in NLS1 galaxies than in BLS1 galaxies, to explain the observations.
This work studies the optical emission line properties and physical conditions of the narrow line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1). Our results show that the flux carried out by the narrow component of H-beta is, on average , 50% of the total line flux. As a result, the [OIII] 5007/H-beta ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [OIII] 5007/H-beta ratio and the weakness of low-ionization lines of NLS1s. Variation of the relative proportion of these two type of clouds nicely reproduce the dispersion of narrow line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1s and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission line ratios between these two groups can be explained in terms of the shape of the input ionizing continuum. Narrow emission line ratios of NLS1s are better reproduced by a steep power-law continuum in the EUV -- soft X-ray region, with spectral index alpha ~ -2. Flatter spectral indices (alpha ~ -1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1s, which show that these objects are characterized by steeper power-law indices than those of Sy1 galaxies with strong broad optical lines.
We present spectroscopic observations of 27 active galactic nuclei (AGN) with some of the lowest black hole (BH) masses known. We use the high spectral resolution and small aperture of our Keck data, taken with the Echellette Spectrograph and Imager, to isolate the narrow-line regions (NLRs) of these low-mass BHs. We investigate their emission-line properties and compare them with those of AGN with higher-mass black holes. While we are unable to determine absolute metallicities, some of our objects plausibly represent examples of the low-metallicity AGN described by Groves et al. (2006), based on their [N II]/H_alpha ratios and their consistency with the Kewley & Ellison (2008) mass-metallicity relation. We find tentative evidence for steeper far-UV spectral slopes in lower-mass systems. Overall, NLR emission lines in these low-mass AGN exhibit trends similar to those seen in AGN with higher-mass BHs, such as increasing blueshifts and broadening with increasing ionization potential. Additionally, we see evidence of an intermediate line region whose intensity correlates with L/L_Edd, as seen in higher-mass AGN. We highlight the interesting trend that, at least in these low-mass AGN, the [O III] equivalent width (EW) is highest in symmetric NLR lines with no blue wing. This trend of increasing [O III] EW with line symmetry could be explained by a high covering factor of lower ionization gas in the NLR. In general, low-mass AGN preserve many well-known trends in the structure of the NLR, while exhibiting steeper ionizing continuum slopes and somewhat lower gas-phase metallicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا