ترغب بنشر مسار تعليمي؟ اضغط هنا

In a paper in 1962, Golod proved that the Betti sequence of the residue field of a local ring attains an upper bound given by Serre if and only if the homology algebra of the Koszul complex of the ring has trivial multiplications and trivial Massey o perations. This is the origin of the notion of Golod ring. Using the Koszul complex components he also constructed a minimal free resolution of the residue field. In this article, we extend this construction up to degree five for any local ring. We describe how the multiplicative structure and the triple Massey products of the homology of the Koszul algebra are involved in this construction. As a consequence, we provide explicit formulas for the first six terms of a sequence that measures how far the ring is from being Golod.
In support variety theory, representations of a finite dimensional (Hopf) algebra $A$ can be studied geometrically by associating any representation of $A$ to an algebraic variety using the cohomology ring of $A$. An essential assumption in this theo ry is the finite generation condition for the cohomology ring of $A$ and that for the corresponding modules. In this paper, we introduce various approaches to study the finite generation condition. First, for any finite dimensional Hopf algebra $A$, we show that the finite generation condition on $A$-modules can be replaced by a condition on any affine commutative $A$-module algebra $R$ under the assumption that $R$ is integral over its invariant subring $R^A$. Next, we use a spectral sequence argument to show that a finite generation condition holds for certain filtered, smash and crossed product algebras in positive characteristic if the related spectral sequences collapse. Finally, if $A$ is defined over a number field over the rationals, we construct another finite dimensional Hopf algebra $A$ over a finite field, where $A$ can be viewed as a deformation of $A$, and prove that if the finite generation condition holds for $A$, then the same condition holds for $A$.
We determine the Gerstenhaber structure on the Hochschild cohomology ring of a class of self-injective special biserial algebras. Each of these algebras is presented as a quotient of the path algebra of a certain quiver. In degree one, we show that t he cohomology is isomorphic, as a Lie algebra, to a direct sum of copies of a subquotient of the Virasoro algebra. These copies share Virasoro degree 0 and commute otherwise. Finally, we describe the cohomology in degree $n$ as a module over this Lie algebra by providing its decomposition as a direct sum of indecomposable modules.
Over a field of prime characteristic $p>2$, we prove that the cohomology rings of some pointed Hopf algebras of dimension $p^3$ are finitely generated. These are Hopf algebras arising in the ongoing classification of finite dimensional Hopf algebras in positive characteristic, and include bosonizations of Nichols algebras of Jordan type in a general setting as well as their liftings when $p=3$. Our techniques are applications of twisted tensor product resolutions and Anick resolutions in combination with May spectral sequences.
We study which algebras have tilting modules that are both generated and cogenerated by projective-injective modules. Crawley-Boevey and Sauter have shown that Auslander algebras have such tilting modules; and for algebras of global dimension $2$, Au slander algebras are classified by the existence of such tilting modules. In this paper, we show that the existence of such a tilting module is equivalent to the algebra having dominant dimension at least $2$, independent of its global dimension. In general such a tilting module is not necessarily cotilting. Here, we show that the algebras which have a tilting-cotilting module generated-cogenerated by projective-injective modules are precisely $1$-Auslander-Gorenstein algebras. When considering such a tilting module, without the assumption that it is cotilting, we study the global dimension of its endomorphism algebra, and discuss a connection with the Finitistic Dimension Conjecture. Furthermore, as special cases, we show that triangular matrix algebras obtained from Auslander algebras and certain injective modules, have such a tilting module. We also give a description of which Nakayama algebras have such a tilting module.
Let $Q$ be a tree-type quiver, $mathbf{k} Q$ its path algebra, and $lambda$ a nonzero element in the field $mathbf{k}$. We construct irreducible morphisms in the Auslander-Reiten quiver of the transjective component of the bounded derived category of $mathbf{k} Q$ that satisfy what we call the $lambda$-relations. When $lambda=1$, the relations are known as mesh relations. When $lambda=-1$, they are known as commutativity relations. Using this technique together with the results given by Baer-Geigle-Lenzing, Crawley-Boevey, Ringel, and others, we show that for any tree-type quiver, several descriptions of its preprojective algebra are equivalent.
We classify pointed $p^3$-dimensional Hopf algebras $H$ over any algebraically closed field $k$ of prime characteristic $p>0$. In particular, we focus on the cases when the group $G(H)$ of group-like elements is of order $p$ or $p^2$, that is, when $ H$ is pointed but is not connected nor a group algebra. This work provides many new examples of (parametrized) non-commutative and non-cocommutative finite-dimensional Hopf algebras in positive characteristic.
For finite-dimensional Hopf algebras, their classification in characteristic $0$ (e.g. over $mathbb{C}$) has been investigated for decades with many fruitful results, but their structures in positive characteristic have remained elusive. In this pape r, working over an algebraically closed field $mathbf{k}$ of prime characteristic $p$, we introduce the concept, called Primitive Deformation, to provide a structured technique to classify certain finite-dimensional connected Hopf algebras which are almost primitively generated; that is, these connected Hopf algebras are $p^{n+1}$-dimensional, whose primitive spaces are abelian restricted Lie algebras of dimension $n$. We illustrate this technique for the case $n=2$. Together with our preceding results in arXiv:1309.0286, we provide a complete classification of $p^3$-dimensional connected Hopf algebras over $mathbf{k}$ of characteristic $p>2$.
Let $p$ be a prime, $k$ be an algebraically closed field of characteristic $p$. In this paper, we provide the classification of connected Hopf algebras of dimension $p^3$, except the case when the primitive space of the Hopf algebra is two dimensiona l and abelian. Each isomorphism class is presented by generators $x, y, z$ with relations and Hopf algebra structures. Let $mu$ be the multiplicative group of $(p^2+p-1)$-th roots of unity. When the primitive space is one-dimensional and $p$ is odd, there is an infinite family of isomorphism classes, which is naturally parameterized by $A_{k}^1/mu$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا